Skip to Content
Merck
CN

435171

Diethoxy(3-glycidyloxypropyl)methylsilane

97%

Synonym(s):

(3-Glycidyloxypropyl)methyldiethoxysilane, [3-(2,3-Epoxypropoxy)propyl]methyldiethoxysilane

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C11H24O4Si
CAS Number:
Molecular Weight:
248.39
UNSPSC Code:
12352103
NACRES:
NA.23
PubChem Substance ID:
EC Number:
220-780-8
Beilstein/REAXYS Number:
121965
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Diethoxy(3-glycidyloxypropyl)methylsilane, 97%

InChI key

OTARVPUIYXHRRB-UHFFFAOYSA-N

InChI

1S/C11H24O4Si/c1-4-14-16(3,15-5-2)8-6-7-12-9-11-10-13-11/h11H,4-10H2,1-3H3

SMILES string

CCO[Si](C)(CCCOCC1CO1)OCC

assay

97%

form

liquid

refractive index

n20/D 1.431 (lit.)

bp

122-126 °C/5 mmHg (lit.)

density

0.978 g/mL at 25 °C (lit.)

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

Coverslips coated with diethoxy(3-glycidyloxypropyl)methyl silane were used as sample holders for electrostatically holding particles for optical microscopy.{52} It may be used to introduce epoxy groups to Fe3O4SiO2 nanoparticles. {53} Self assembled monolayer (SAMs) of diethoxy(3- glycidyloxypropyl)methylsilane could be formed on the oxide layer of silicon wafer to render them siloxane functionalities.{54}
GPMS can be used in the surface modification of a variety of particles such as cellulose nanocrystals, silica nanomaterials and other silicon based substrates. It functionalizes these surfaces by attaching the epoxy-silane groups with the surface molecules.

General description

Diethoxy(3-glycidyloxypropyl)methylsilane (GPMS) is an epoxysilane which can be used as a silane coupling agent for the surface treatment of a variety of materials. These silanes can also be used as adhesion promoters by modifying the surface properties of the substrates and elastomeric materials.

pictograms

Exclamation mark

signalword

Warning

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

target_organs

Respiratory system

Storage Class

10 - Combustible liquids

wgk

WGK 3

flash_point_f

251.6 °F - closed cup

flash_point_c

122 °C - closed cup

ppe

Eyeshields, Gloves, type ABEK (EN14387) respirator filter


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Quantitative Analysis of Interdigitation Kinetics between a Polymer Melt and a Polymer Brush.
Chennevie?re A, et al.
Macromolecules, 46(17), 6955-6962 (2013)
Colloidal Particles that Rapidly Change Shape via Elastic Instabilities.
Epstein E, et al.
Small, 11(45), 6051-6057 (2015)
Surface-modified cellulose nanocrystals for biobased epoxy nanocomposites
Yue L, et al.
Polymer, 134(45), 155-162 (2018)
Zwitterionic SiO 2 nanoparticles as novel additives to improve the antifouling properties of PVDF membranes
Zhu J, et al.
Royal Society of Chemistry Advances, 5(66), 53653-53659 (2015)
Quantitative molecular level understanding of ethoxysilane at poly (dimethylsiloxane)/polymer interfaces
Zhang C and Chen Z
Langmuir, 29(2), 610-619 (2012)

Articles

Mesoporous materials, such as aerogels, offer advantages for practical hydrogen storage. They have large surface areas, open porosity, small pore sizes, and the ability to coat the surface with one or more compounds.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service