Skip to Content
Merck
CN
All Photos(2)

Documents

410497

Sigma-Aldrich

4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran

Dye content 98 %

Synonym(s):

DCM

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C19H17N3O
CAS Number:
Molecular Weight:
303.36
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

form

solid

Quality Level

composition

Dye content, 98%

mp

215-220 °C (lit.)

λmax

468 nm

OLED Device Performance

ITO/Alq3:DCM/Alq3/Mg:Ag

  • Color: red
  • Max. EQE: 1.3 %

ITO/TPD/Alq3:DCM (10%)/Alq3/Mg:Ag
  • Color: red
  • Max. Luminance: 150 Cd/m2

SMILES string

CN(C)c1ccc(\C=C\C2=CC(\C=C(C)O2)=C(\C#N)C#N)cc1

InChI

1S/C19H17N3O/c1-14-10-16(17(12-20)13-21)11-19(23-14)9-6-15-4-7-18(8-5-15)22(2)3/h4-11H,1-3H3/b9-6+

InChI key

YLYPIBBGWLKELC-RMKNXTFCSA-N

General description

4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) is a red laser dye that consists of dicyanomethylene as an electron acceptor and dimethylaniline group as an electron donor. It has a π-conjugated 4H-pyran-4-ylidiene which bridges both the acceptor/donor groups. It can be used as a dopant and also in organic solid state lasers.

Application

DCM can be used as a laser dye to enhance the emission of distributed feedback (DFB) device by FÖrster resonance energy transfer (FRET). It may be used as a capping layer that allows the conversion of blue to red colored emission in organic light emitting diodes (OLED). DCM may also find potential applications in the enhancement of energy transfer of different devices like metal organic frameworks (MOFs), dye sensitized solar cells (DSSCs) and polarity sensors.

Features and Benefits

Voltage-tunable multicolor emission with enhanced luminance (~1000 cd/m2) was observed using varying amounts of DCM dye in a polymer light-emitting diode (PLED).

Pictograms

FlameExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 4 Inhalation - Eye Irrit. 2 - Flam. Sol. 1 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

WGK

WGK 3

Flash Point(F)

109.4 °F

Flash Point(C)

43 °C

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Kaur, A. et al.
Synt. Metals, 126, 283-283 (2002)
Pratik Sen et al.
The journal of physical chemistry. B, 109(8), 3319-3323 (2006-07-21)
Solvation dynamics of 4-(dicyanomethylene)-2-methyl-6(p-dimethylaminostyryl) 4H-pyran (DCM) has been studied in a dipalmitoyl-phosphatidylcholine (DPPC) vesicle entrapped in a sodium silicate derived sol-gel glass. Solvation dynamics in DPPC in a sol-gel glass is described by two components of 350 +/- 50 ps
Marco Leonetti et al.
Optics letters, 34(24), 3764-3766 (2009-12-18)
We present a detailed study of the gain length in an active medium obtained by doping of DNA strands with 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dye molecules. The superior thermal stability of the composite and its low quenching permit one to obtain an optical
Panchromatic quasi-solid-state squaraine dye sensitized solar cells enhanced by Forster resonance energy transfer of DCM-pyran.
Yun H, et al.
Dyes and Pigments, 113(3), 675-681 (2015)
Arnab Halder et al.
Langmuir : the ACS journal of surfaces and colloids, 20(3), 653-657 (2005-03-19)
Solvation dynamics of 4-(dicyanomethylidene)-2-[p-(dimethylamino)styryl]-6-methyl-4H-pyran (DCM) is studied in a polypeptide-surfactant aggregate consisting of gelatin and sodium dodecyl sulfate (SDS) in potassium dihydrogen phosphate (KP) buffer. The average solvation time (tauS) in gelatin-SDS aggregate at 45 degrees C is found to

Articles

Developed in the last several years, fluorescence quenching microscopy (FQM) has enabled rapid, inexpensive, and high-fidelity visualization of two-dimensional (2D) materials such as graphene-based sheets and MoS2.

Graphene is the building block for carbon nanomaterials with different dimensionalities.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service