Skip to Content
Merck
CN

398195

Lithium tert-butoxide solution

1.0 M in THF

Synonym(s):

tert-Butoxylithium, Lithium 2-methylpropan-2-olate, Lithium t-butoxide, Lithium tert-butylate, Lithium salt of tert-Butyl alcohol

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
(CH3)3COLi
CAS Number:
Molecular Weight:
80.05
UNSPSC Code:
12352300
NACRES:
NA.22
PubChem Substance ID:
MDL number:
Beilstein/REAXYS Number:
3620018
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Lithium tert-butoxide solution, 1.0 M in THF

InChI

1S/C4H9O.Li/c1-4(2,3)5;/h1-3H3;/q-1;+1

SMILES string

[Li+].CC(C)(C)[O-]

InChI key

LZWQNOHZMQIFBX-UHFFFAOYSA-N

form

liquid

concentration

1.0 M in THF

bp

67 °C

density

0.888 g/mL at 25 °C

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

Lithium tert-butoxide solution is generally used as a strong base in organic synthesis.
It can be used:
  • For the synthesis of lithium modified silica nano-particles for conductive gel electrolytes.
  • As a catalyst for ring-opening polymerization of lactides.
  • As a lithium precursor for the synthesis of LiV3O8 nanoparticles by flame spray pyrolysis.

signalword

Danger

Hazard Classifications

Acute Tox. 4 Oral - Carc. 2 - Eye Dam. 1 - Flam. Liq. 2 - Self-heat. 1 - Skin Corr. 1B - STOT SE 3

target_organs

Central nervous system, Respiratory system

supp_hazards

Storage Class

4.2 - Pyrophoric and self-heating hazardous materials

wgk

WGK 3

flash_point_f

-2.2 °F - closed cup

flash_point_c

-19 °C - closed cup

ppe

Faceshields, Gloves, Goggles, type ABEK (EN14387) respirator filter

Regulatory Information

危险化学品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Efficient and controlled polymerization of lactide under mild conditions with a sodium-based catalyst.
Chen HY, et al.
Green Chemistry, 9(10), 1038-1040 (2007)
Electrochemistry of LiV3O8 nanoparticles made by flame spray pyrolysis.
Patey TJ, et al.
Electrochemical and Solid-State Letters, 11(4), A46-A50 (2008)
Solid-phase synthesis of quinoxaline, thiazine, and oxazine analogs through a benzyne intermediate.
Dixon S, et al.
Tetrahedron Letters, 46(43), 7443-7446 (2005)
Gel electrolytes based on lithium modified silica nano-particles.
Sun J, et al.
Electrochimica Acta, 52(24), 7083-7090 (2007)
Teng-Hao Chen et al.
Nature communications, 5, 5131-5131 (2014-10-14)
Metal-organic and covalent organic frameworks are porous materials characterized by outstanding thermal stability, high porosities and modular synthesis. Their repeating structures offer a great degree of control over pore sizes, dimensions and surface properties. Similarly precise engineering at the nanoscale

Articles

Nanomaterials are considered a route to the innovations required for large-scale implementation of renewable energy technologies in society to make our life sustainable.

Few Monolayer Atomic Layer Deposition (ALD) on Surfaces and Interfaces for Energy Applications

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service