Skip to Content
Merck
CN
All Photos(3)

Documents

370959

Sigma-Aldrich

Lignin, alkali

Sign Into View Organizational & Contract Pricing

Synonym(s):
Lignin, kraft
CAS Number:
MDL number:
UNSPSC Code:
12162002
NACRES:
NA.23

description

surface tension 43 mN/m (1% aqueous)

Quality Level

form

powder

impurities

5% moisture

loss

13.4 wt. % loss on heating, @ 316°C
3.3 wt. % loss on heating, @ 149°C
5.7 wt. % loss on heating, @ 204°C
8.5 wt. % loss on heating, @ 260°C

pH

6.5 (25 °C, 5%, aqueous solution)

transition temp

sintering point 188 °C

solubility

NaOH: 0.05% (warm 5% aquesous)
MEK: partially soluble
benzene: insoluble
dioxane: soluble
ethylene glycol: soluble
hexane: insoluble
methanol: partially soluble

density

1.3 g/mL at 25 °C

bulk density

23 lb/cu.ft (loose)
32 lb/cu.ft (packed)

Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

Lignin, alkali is a complex, three dimensional polymer that is also known as kraft lignin that has undergone hydrolytic degradation. It is one of the major components of lignocellulosic materials. Lignin is a major product for second generation bioethanol production and is an impurity in the separation of cellulose from wood.

Application

Lignin, alkali can be used as a surface treatment agent for composites of natural fibers with petroleum based resins. It can be used as a biosorbent for potential applications in removing toxic metal ions from wastewater.

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Dong Tian et al.
Biotechnology for biofuels, 10, 157-157 (2017-06-27)
Current single-stage delignification-pretreatment technologies to overcome lignocellulosic biomass recalcitrance are usually achieved at the expense of compromising the recovery of the polysaccharide components, particularly the hemicellulose fraction. One way to enhance overall sugar recovery is to tailor an efficient two-stage
Aiguo Wang et al.
Bioresource technology, 268, 505-513 (2018-08-17)
Maximizing the production of aromatic hydrocarbons from lignin conversion by coupling methane activation without solvent was investigated over Zn-Ga modified zeolite catalyst. The co-loading of Zn and Ga greatly improves lignin conversion, arene yield along with BTEX (i.e., benzene, toluene
Tanja Berger et al.
Folia microbiologica, 66(1), 87-98 (2020-09-26)
The potential of the culturable bacterial community from an Alpine coniferous forest site for the degradation of organic polymers and pollutants at low (5 °C) and moderate (20 °C) temperatures was evaluated. The majority of the 68 strains belonged to
Thiranan Kunanopparat et al.
Journal of agricultural and food chemistry, 57(18), 8526-8533 (2009-08-25)
The effect of Kraft lignin (KL) on wheat gluten (WG) network formation during biomaterial processing was investigated. Gluten plasticized with glycerol was blended with a variable content of KL and processed into material by mixing and hot molding. The effect
S Gouveia et al.
Bioresource technology, 121, 131-138 (2012-08-04)
The potential ability of the laccase from Myceliophthora thermophila, either alone or with low molecular weight (LMW) additives, to polymerise a dissolved lignin from Kraft liquor of eucalypt cooking was investigated. A previous study of enzymatic performance (activity and stability)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service