Skip to Content
Merck
CN
All Photos(3)

Documents

264113

Sigma-Aldrich

Indium

beads, diam. 2-5 mm, 99.999% trace metals basis

Sign Into View Organizational & Contract Pricing

Synonym(s):
Indium element
Empirical Formula (Hill Notation):
In
CAS Number:
Molecular Weight:
114.82
EC Number:
MDL number:
UNSPSC Code:
12352300
PubChem Substance ID:
NACRES:
NA.23

vapor pressure

<0.01 mmHg ( 25 °C)

Quality Level

Assay

99.999% trace metals basis

form

beads

resistivity

8.37 μΩ-cm

diam.

2-5 mm

mp

156.6 °C (lit.)

density

7.3 g/mL at 25 °C (lit.)

SMILES string

[In]

InChI

1S/In

InChI key

APFVFJFRJDLVQX-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

Application


  • Exploring Layered Disorder in Lithium-Ion-Conducting Li(3)Y(1-x)In(x)Cl(6).: Investigates the effect of indium substitution in lithium yttrium chloride solid electrolytes, enhancing ionic conductivity and stability for battery applications ( Banik et al., 2024).

  • Ultrasoft and Ultrastretchable Wearable Strain Sensors with Anisotropic Conductivity Enabled by Liquid Metal Fillers.: Develops a flexible, stretchable strain sensor using indium-based liquid metal fillers, targeting applications in wearable electronics ( Choe et al., 2022).

  • A smelting-rolling strategy for ZnIn bulk phase alloy anodes.: Describes a novel processing technique for zinc-indium alloy anodes that enhances electrochemical performance and durability in batteries ( Chai et al., 2022).

  • In-MOF-Derived Hierarchically Hollow Carbon Nanostraws for Advanced Zinc-Iodine Batteries.: Presents a method to fabricate hierarchically hollow carbon nanostructures from indium-based metal-organic frameworks, improving the energy storage capacity of zinc-iodine batteries ( Chai et al., 2022).

Pictograms

Health hazard

Signal Word

Danger

Hazard Statements

Precautionary Statements

Hazard Classifications

STOT RE 1 Inhalation

Target Organs

Lungs

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Juan Zhou et al.
Chemical communications (Cambridge, England), 49(22), 2237-2239 (2013-02-12)
A reduced graphene oxide (RGO)-ZnIn(2)S(4) nanosheet composite was successfully synthesized via an in situ controlled growth process. The as-obtained RGO-ZnIn(2)S(4) composite showed excellent visible light H(2) production activity in the absence of noble metal cocatalysts.
Yongseok Kwon et al.
Organic letters, 15(4), 920-923 (2013-02-05)
This paper documents the first example of In(III)-catalyzed selective 6-exo-dig hydroarylation of o-propargylbiaryls and their subsequent double-bond migration to obtain functionalized phenanthrenes. Electron-rich biaryl substrates undergo hydroarylation more effectively, and the substrates with various types of substituents on the alkyne
R C Longo et al.
Journal of physics. Condensed matter : an Institute of Physics journal, 25(8), 085506-085506 (2013-02-01)
Unlike graphene, a hexagonal InP sheet (HInPS) cannot be obtained by mechanical exfoliation from the native bulk InP, which crystallizes in the zinc blende structure under ambient conditions. However, by ab initio density functional theory calculations we found that a
Thirumaleshwara N Bhat et al.
Journal of nanoscience and nanotechnology, 13(1), 498-503 (2013-05-08)
The thermal oxidation process of the indium nitride (InN) nanorods (NRs) was studied. The SEM studies reveal that the cracked and burst mechanism for the formation of indium oxide (In2O3) nanostructures by oxidizing the InN NRs at higher temperatures. XRD
Yuji Zhao et al.
Optics express, 21 Suppl 1, A53-A59 (2013-02-15)
Linear polarized electroluminescence was investigated for semipolar (3031) and (3031) InGaN light-emitting diodes (LEDs) with various indium compositions. A high degree of optical polarization was observed for devices on both planes, ranging from 0.37 at 438 nm to 0.79 at

Articles

Solid state and materials chemistry have made a tremendous impact and have experienced growth in recent years, particularly for rare earthcontaining materials.

Lanthanide ions in spectral conversion enhance solar cell efficiency via photon conversion.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service