Skip to Content
Merck
CN

256439

4,4′-Methylenebis(phenyl isocyanate)

98%

Synonym(s):

4,4′-MDI, Bis(4-isocyanatophenyl)methane

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
CH2(C6H4NCO)2
CAS Number:
Molecular Weight:
250.25
UNSPSC Code:
12162002
NACRES:
NA.23
PubChem Substance ID:
EC Number:
202-966-0
Beilstein/REAXYS Number:
797662
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

4,4′-Methylenebis(phenyl isocyanate), 98%

InChI key

UPMLOUAZCHDJJD-UHFFFAOYSA-N

InChI

1S/C15H10N2O2/c18-10-16-14-5-1-12(2-6-14)9-13-3-7-15(8-4-13)17-11-19/h1-8H,9H2

SMILES string

O=C=Nc1ccc(Cc2ccc(cc2)N=C=O)cc1

assay

98%

form

solid

reaction suitability

reagent type: cross-linking reagent

bp

200 °C/5 mmHg (lit.)

mp

42-45 °C (lit.)

density

1.18 g/mL at 25 °C (lit.)

storage temp.

−20°C

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

4,4′-Methylenebis(phenyl isocyanate) can be used as a starting material to synthesize:
  • Polyurethane cationomers, that are applicable in medical implants.
  • A prepolymer for preparing self-healable polyurethane elastomers.
It can also be used as a cross-linking agent to synthesize PEBA (polyether-block-amide) copolymer with improved mechanical properties, which are mainly used in soles, medical tubes, aerospace parts, and chemical separation. Additionally, MDI is also used as a crosslinker to covalently modify graphene oxide (GO) and enhance the corrosion resistance of polystyrene coatings. The resultant polystyrene/GO-MDI composite coatings showed superior corrosion resistance to unmodified polystyrene coatings. This approach can potentially be used to improve the durability of materials in various industrial and biomedical applications.

General description

4,4′-Methylenebis(phenyl isocyanate) (MDI) is an aromatic diisocyanates class of monomer that is widely used in the production of polyurethane plastics, foam insulation, coatings, adhesives, and sealants. It is highly reactive due to the presence of two isocyanate functional groups. MDI is known for its excellent strength, durability, and resistance to chemical and environmental damage, which makes it useful in resin composition, lithographic printing plates, coating films, optical films, image display devices, semiconductor devices, and polyurethane foam production.

pictograms

Health hazardExclamation mark

signalword

Danger

Hazard Classifications

Acute Tox. 4 Inhalation - Carc. 2 - Eye Irrit. 2 - Resp. Sens. 1 - Skin Irrit. 2 - Skin Sens. 1 - STOT RE 2 Inhalation - STOT SE 3

target_organs

Respiratory system

Storage Class

11 - Combustible Solids

wgk

WGK 1

flash_point_f

411.8 °F - closed cup

flash_point_c

211 °C - closed cup

ppe

dust mask type N95 (US), Eyeshields, Faceshields, Gloves

Regulatory Information

危险化学品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Preparation and Characterization of Isosorbide-Based Self-Healable Polyurethane Elastomers with Thermally Reversible Bonds
Han-Na Kim, et al.
Molecules (Basel), 24 (2019)
Jyun-Yan Ye et al.
Materials (Basel, Switzerland), 14(4) (2021-02-11)
A series of N-substituted polyether-block-amide (PEBA-X%) copolymers were prepared by melt polycondensation of nylon-6 prepolymer and polytetramethylene ether glycol at an elevated temperature using titanium isopropoxide as a catalyst. The structure, thermal properties, and crystallinity of PEBA-X% were investigated using
Polyurethane cationomers synthesised with 4, 4?-methylenebis (phenyl isocyanate), polyoxyethylene glycol and N-methyl diethanolamine
Piotr Krol, et al.
Colloid and Polymer Science, 286, 1111-1122 (2008)
Journal of Applied Physiology, 70, 6983-6983 (1991)
Joshua W Schaeffer et al.
Journal of occupational and environmental hygiene, 10(4), 213-221 (2013-02-28)
The purpose of this study was to determine if there was a significant difference between two readily available sampling methodologies for airborne methylene bisphenyl diisocyanate (MDI), which is an essential precursor in the spray-on truck bed lining industry. Seventy-two personal

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service