Skip to Content
Merck
CN

243450

Tellurium dioxide

≥99%

Synonym(s):

Tellurium(IV) oxide

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
TeO2
CAS Number:
Molecular Weight:
159.60
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
12352303
EC Number:
231-193-1
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Tellurium dioxide, ≥99%

InChI key

LAJZODKXOMJMPK-UHFFFAOYSA-N

InChI

1S/O2Te/c1-3-2

SMILES string

O=[Te]=O

assay

≥99%

form

powder

mp

733 °C (lit.)

density

5.67 g/mL at 25 °C (lit.)

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

Tellurium dioxide is used to prepare tellurium metal, telluric acid, and many tellurium salts. It may also be used in the preparation of Ag2Te nanoparticles.

General description

Tellurium dioxide, also known as tellurium(IV) oxide, is a white, crystalline solid with a melting point of 1,130 °C and a boiling point of 1,850 °C. Tellurium dioxide is an important material in a number of applications, including as a catalyst in the synthesis of plastics resins, and pharmaceuticals, and as a component in tellurium-based alloys. Tellurium dioxide is typically made at high temperatures either by decomposition of tellurium(IV) chloride or tellurium(IV) sulfate in the presence of oxygen.

signalword

Danger

Hazard Classifications

Acute Tox. 4 Inhalation - Aquatic Chronic 2 - Lact. - Repr. 1B - Skin Sens. 1B

Storage Class

6.1D - Non-combustible acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Mao Shen et al.
Nanoscale research letters, 8(1), 253-253 (2013-05-31)
A facile one-step synthesis of CdTe quantum dots (QDs) in aqueous solution by atmospheric microwave reactor has been developed using 3-mercaptopropionic acid reduction of TeO2 directly. The obtained CdTe QDs were characterized by ultraviolet-visible spectroscopy, fluorescent spectroscopy, X-ray powder diffraction
Tingjun Wu et al.
Frontiers in chemistry, 8, 84-84 (2020-03-21)
A systematic electrochemical study was conducted to investigate the reduction of tellurium (Te) in alkaline solutions. The effect of various parameters, including tellurite ion concentration, applied potential, and pH was investigated by both linear sweep voltammograms (LSVs) and electrochemical quartz
G Bilir et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 83(1), 314-321 (2011-09-20)
TeO(2)-CdF(2)-WO(3) glasses with various compositions and Er(3+) concentrations were prepared by conventional melting method. Their optical properties were studied by measuring the absorption, luminescence spectra and the decay patterns at room temperature. From the optical absorption spectra the Judd-Ofelt parameters
Sankha Chattopadhyay et al.
Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, 68(10), 1967-1969 (2010-05-18)
A simple and inexpensive ion-exchange chromatography method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed and tested using (131)I. The radiochemical separation was performed using a very
Sankha Chattopadhyay et al.
Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, 67(10), 1748-1750 (2009-05-05)
A simple and inexpensive method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed. The beta(-) emitting (131)I radionuclide, produced by the decay of (131)Te through the (nat)Te(n

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service