Skip to Content
Merck
CN
All Photos(1)

Documents

Safety Information

222011

Sigma-Aldrich

Copper(II) chloride

97%

Sign Into View Organizational & Contract Pricing

Synonym(s):
Cupric chloride
Linear Formula:
CuCl2
CAS Number:
Molecular Weight:
134.45
EC Number:
MDL number:
UNSPSC Code:
12352300
PubChem Substance ID:
NACRES:
NA.22

Quality Level

Assay

97%

form

powder

reaction suitability

core: copper
reagent type: catalyst

mp

620 °C (lit.)

density

3.386 g/mL at 25 °C (lit.)

SMILES string

Cl[Cu]Cl

InChI

1S/2ClH.Cu/h2*1H;/q;;+2/p-2

InChI key

ORTQZVOHEJQUHG-UHFFFAOYSA-L

Looking for similar products? Visit Product Comparison Guide

Application

Copper(II) chloride may be used in the preparation of copper(II)-chitosan complexes with potential applications in biomedical devices as antibiotic-free antibacterial biomaterials due to their cytocompatibility and antibacterial property.
Effective catalyst for the tetrahydropyranylation of alcohols, using mild conditions and in high yields.
Used with palladium in a catalytic synthesis of 3-haloindoles via an annulation process.

related product

Product No.
Description
Pricing

Signal Word

Danger

Hazard Classifications

Acute Tox. 4 Dermal - Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 2 - Eye Dam. 1 - Skin Irrit. 2

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Information

危险化学品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Marcin H Kudzin et al.
Marine drugs, 18(12) (2020-12-30)
In recent years, due to an expansion of antibiotic-resistant microorganisms, there has been growing interest in biodegradable and antibacterial polymers that can be used in selected biomedical applications. The present work describes the synthesis of antimicrobial polylactide-copper alginate (PLA-ALG-Cu2+) composite
Synthesis, 1841-1841 (2007)
Olivija Plohl et al.
Nanomaterials (Basel, Switzerland), 9(2) (2019-02-10)
Due to the extreme rise of sludge pollution with heavy metals (e.g. copper), the options for its disposal or treatment are decreasing. On the contrary, properly heavy metal-cleaned sludge can be used as an alternative sustainable energy and agriculture source.
Manisha Kondiba Date et al.
Nanoscale research letters, 15(1), 45-45 (2020-02-20)
Three-dimensional (3D) CuO/TiO2 hybrid heterostructure nanorod arrays (NRs) with noble-metal-free composition, fabricated by template-assisted low-cost processes, were used as the photo-Fenton-like catalyst for dye degradation. Here, CuO NRs were deposited into anodic aluminum oxide templates by electrodeposition method annealed at
Lukas Gritsch et al.
Carbohydrate polymers, 179, 370-378 (2017-11-08)
We produced and characterized copper(II)-chitosan complexes fabricated via in-situ precipitation as antibiotic-free antibacterial biomaterials. Copper was bound to chitosan from a dilute acetic acid solution of chitosan and copper(II) chloride exploiting the ability of the polysaccharide to chelate metal ions.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service