Skip to Content
Merck
CN

221880

Zirconium(IV) chloride

greener alternative

≥99.5% trace metals basis

Synonym(s):

Tetrachlorozirconium, Zirconium tetrachloride

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
ZrCl4
CAS Number:
Molecular Weight:
233.04
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
12352302
EC Number:
233-058-2
MDL number:
Assay:
≥99.5% trace metals basis
Form:
powder
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Zirconium(IV) chloride, ≥99.5% trace metals basis

InChI key

DUNKXUFBGCUVQW-UHFFFAOYSA-J

InChI

1S/4ClH.Zr/h4*1H;/q;;;;+4/p-4

SMILES string

Cl[Zr](Cl)(Cl)Cl

vapor pressure

1 mmHg ( 190 °C)

assay

≥99.5% trace metals basis

form

powder

reaction suitability

core: zirconium
reagent type: catalyst

greener alternative product characteristics

Catalysis
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

impurities

≤5000.0 ppm Trace Metal Analysis

transition temp

sublimation point 331 °C

density

2.8 g/mL at 25 °C (lit.)

greener alternative category

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

Used to promote greener amidations of carboxylic acids and amines in catalytic amounts. This technology avoids the requirement of preactivation of the carboxylic acid or use of coupling reagents.

Direct amide formation from unactivated carboxylic acids and amines

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for catalytic efficiency. Click here for more information.

pictograms

Corrosion

signalword

Danger

hcodes

Hazard Classifications

Met. Corr. 1 - Skin Corr. 1B

supp_hazards

Storage Class

8A - Combustible corrosive hazardous materials

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges

Regulatory Information

危险化学品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Ines Sifaoui et al.
Frontiers in bioengineering and biotechnology, 9, 584115-584115 (2021-02-19)
In this study, the application of amphipods in vivo assays was evaluated. The main aim of this work was to check the potential use of this model in biocompatibility assessments of metal-organic frameworks (MOFs). Hence, six different MOFs were synthesized
Stefania Fioravanti et al.
Organic & biomolecular chemistry, 10(41), 8207-8210 (2012-09-26)
ZrCl(4) was found to be an ideal catalyst to promote aza-Henry reactions between trifluoromethyl aldimines and some nitro alkanes giving new fluorinated β-nitro amines. The reaction is strongly influenced by the CF(3) group, the yield by the alkyl chain of
Thomas A Dineen et al.
Journal of the American Chemical Society, 128(50), 16406-16409 (2006-12-15)
Two protocols for the transamidation of primary amides with primary and secondary amines, forming secondary and tertiary amides, respectively, are described. Both processes employ N,N-dialkylformamide dimethyl acetals for primary amide activation, producing N'-acyl-N,N-dialkylformamidines as intermediates, as widely documented in the
Giles W Theaker et al.
Dalton transactions (Cambridge, England : 2003), (48)(48), 6883-6885 (2008-12-04)
A group of readily available zirconium catalysts incapable of ethene-co-styrene polymerization are remarkably active and selective for the production of the new polymer ethene-co-tert-butylstyrene via a single site mechanism.
Ilanit Doron-Mor et al.
Langmuir : the ACS journal of surfaces and colloids, 20(24), 10727-10733 (2004-11-17)
Coordination self-assembly of bishydroxamate-based metal-organic multilayers on gold employing a layer-by-layer (LbL) approach was investigated. It is shown that the solution chemistry of the participating metal ion has a marked influence on the composition and properties of the multilayers. Use

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service