Skip to Content
Merck
CN

208523

Ruthenium(III) chloride

solid, Ru content 45-55%

Synonym(s):

Ruthenium trichloride

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
RuCl3
CAS Number:
Molecular Weight:
207.43
NACRES:
NA.22
PubChem Substance ID:
UNSPSC Code:
12161600
EC Number:
233-167-5
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Ruthenium(III) chloride, Ru content 45-55%

InChI key

YBCAZPLXEGKKFM-UHFFFAOYSA-K

InChI

1S/3ClH.Ru/h3*1H;/q;;;+3/p-3

SMILES string

Cl[Ru](Cl)Cl

form

solid

reaction suitability

core: ruthenium
reagent type: catalyst
reaction type: Atom Transfer Radical Polymerization (ATRP)

density

3.11 g/mL at 25 °C (lit.)

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

Ruthenium(III) chloride is used as a catalyst:

  • In the synthesis of β‐amino alcohols by nucleophilic opening of epoxides with anilines.
  • In the acetylation of varies of phenols, alcohols, thiols, and amines under mild conditions.
  • In the synthesis of α‐aminonitriles by mixing aldehydes, amines, and trimethylsilyl cyanides.

General description

Ruthenium(III) chloride is a chemical compound, that can be used as a mild Lewis acid catalyst for the acetalization of aldehydes, acetalization of alcohols, and conversion of ketoximes to amides. Additionally, it can also be used as a precursor to synthesize Ru nanoparticles.

Other Notes

insoluble form

signalword

Danger

Hazard Classifications

Acute Tox. 4 Oral - Aquatic Chronic 2 - Eye Dam. 1 - Skin Corr. 1B

Storage Class

8B - Non-combustible corrosive hazardous materials

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Halloysite nanotube supported Ru nanocatalysts synthesized by the inclusion of preformed Ru nanoparticles for preferential oxidation of CO in H2-rich atmosphere
Wang L, et al
The Journal of Physical Chemistry C, 117(8), 4141-4151 (2013)
Ruthenium (III) chloride-catalyzed ring opening of epoxides with aromatic amines
De SK and Gibbs RA
Synthetic Communications, 35(20), 2675-2680 (2005)
Takaya Terashima et al.
Macromolecular rapid communications, 33(9), 833-841 (2012-04-25)
Multifunctional microgel-core star polymers with ruthenium catalysts are designed as catalyst-bearing nanoreactors to improve activity, controllability, and functionality tolerance in living radical polymerization. Multifunctional ligands are efficiently incorporated into the core of star polymers by sequential tandem procedures: 1) ruthenium-catalyzed
Wanqing Teng et al.
Frontiers in chemistry, 8, 334-334 (2020-05-21)
It is highly promising to design and develop efficient and economical electrocatalysts for oxygen evolution reaction (OER) in alkaline solution. In this work, we prepare FeCoNi sulfide composites (including FeS, Co3S4, and Ni3S4) derived from in situ sulfurization of precursor
Ruthenium (III) chloride catalyzed acylation of alcohols, phenols, thiols, and amines
De SK
Tetrahedron Letters, 45(14), 2919-2922 (2004)

Articles

Micro review of reversible addition/fragmentation chain transfer (RAFT) polymerization.

Protocols

We present an article about RAFT, or Reversible Addition/Fragmentation Chain Transfer, which is a form of living radical polymerization.

Polymerization via ATRP procedures demonstrated by Prof. Dave Haddleton's research group at the University of Warwick.

We presents an article featuring procedures that describe polymerization of methyl methacrylate and vinyl acetate homopolymers and a block copolymer as performed by researchers at CSIRO.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service