跳转至内容
Merck
CN

932213

Sigma-Aldrich

XantPhos Pd G3 ChemBeads

登录查看公司和协议定价

别名:
[(4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene)-2-(2′-amino-1,1′-biphenyl)]palladium(II) methanesulfonate
经验公式(希尔记法):
C52H45NO4P2PdS
分子量:
948.35
NACRES:
NA.22

一般描述

XantPhos Pd G3 is a third generation (G3) Buchwald precatalyst. It is air, moisture and thermally-stable and is highly soluble in a wide range of common organic solvents. It has long life in solutions. XantPhos Pd G3 is an excellent reagent for palladium catalyzed cross-coupling reactions. Some of its unique features include lower catalyst loadings, shorter reaction time, efficient formation of the active catalytic species and accurate control of ligand: palladium ratio.

应用

XantPhos Pd G3 may be used in the following processes:

Negishi cross-coupling reaction during the synthesis of palmerolides.
Aminocarbonylation of heteroaryl bromides with carbon monoxide (CO) in the presence of triethylamine.
Coupling between polyglycosyl thiols and aglycon halides by C-S bond formation.

ChemBeads are chemical coated glass beads. ChemBeads offer improved flowability and chemical uniformity perfect for automated solid dispensing and high-throughput experimentation. The method of creating ChemBeads uses no other chemicals or surfactants allowing the user to accurately dispense sub-milligram amounts of chemical.

Learn more about ChemBeads products

Product is also available as neat precatalyst (763039)

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable

法规信息

新产品

分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Versatile Methods to Dispense Submilligram Quantities of Solids Using Chemical-Coated Beads for High-Throughput Experimentation
Martin, et al
Organic Process Research & Development, 23, 1900?1907-1900?1907 (2019)
High-Throughput Reaction Screening with Nanomoles of Solid Reagents Coated on Glass Beads
Tu, Noah P., et al.
Angewandte Chemie (International Edition in English), 58, 7987-7991 (2019)
Ana L Aguirre et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 27(51), 12981-12986 (2021-07-08)
High-throughput experimentation (HTE) methods are central to modern medicinal chemistry. While many HTE approaches to C-N and Csp2 -Csp2 bonds are available, options for Csp2 -Csp3 bonds are limited. We report here how the adaptation of nickel-catalyzed cross-electrophile coupling of

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门