Skip to Content
Merck
CN
HomeCross-CouplingYlide Substituted Phosphines in Palladium Catalyzed Coupling

Ylide-Substituted Phosphines in Palladium-Catalyzed Coupling Reactions

Daniel Knyszek and Viktoria H. Gessner*, Department of Chemistry and Biochemistry Inorganic Chemistry II, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany

Abstract

Palladium-catalyzed coupling reactions have become an indispensable tool for the formation of complex organic molecules. Many advances have benefited from the development of new, sophisticated ligands, particularly electron-rich organophosphines. This review provides an overview of the development of these phosphines for application in palladium-catalyzed cross-couplings. It focuses on recently reported ligands with donor capacities beyond tri(tert-butyl)phosphine, in particular the highly electron-rich, ylide-substituted phosphines developed in our group.

Introduction

Palladium-catalyzed coupling reactions have developed into one of the most important methodologies for the construction of carbon–carbon and carbon–heteroatom bonds. Owing to the reliability of many coupling protocols, their broad substrate scope, mildness, and efficiency, this methodology has become indispensable for the formation of complex molecules such as pharmaceuticals, agrochemicals, and organic materials. Accordingly, the pioneering work done in this area by Richard F. Heck, Akira Suzuki, and Ei-ichi Negishi was recognized with the awarding of the Nobel Prize to those three in 2010.1 Since then, the field has seen continuous advances many of which have been connected with the development of new, more effective catalysts. Although many transition metals have been shown to promote coupling reactions, palladium remains in general the most effective and hence most applied metal in this type of chemistry.

Organophosphines are the dominant class of ligands in this area. The tuning of their electronic and steric properties to accelerate the rate-limiting step within the catalytic cycle has enabled many advances. Early work has focused on the use of simple arylphosphines, with PPh3 remaining one of the most applied phosphine ligands for the coupling of aryl iodides and bromides owing to its cost-effectiveness. Further Ylide-Substituted Phosphines in Palladium-Catalyzed Coupling Reactions Daniel Knyszek and Viktoria H. Gessner* improvements were achieved by the use of diphosphines; followed by electron-rich, bulky alkylphosphines, which currently dominate advanced applications such as the coupling of aryl chlorides and triflates.2 The search for strongly electron- donating monophosphines started with the use of tri(tert- butyl)phosphine, P(t-Bu)3, introduced by Fu in 1998.3 Since then, various types of alkylphosphines have been reported and are nowadays commercially available. In this review, we focus on phosphines exceeding the donor strength of P(t-Bu)3, concentrating on our previously reported ylide-functionalized phosphines, which we discuss in the context of the ongoing development of electron-rich ligands and their impact on coupling chemistry.

Conclusions

Although ylide-substituted phosphines (YPhos) only found applications in homogeneous catalysis for the first time in 2018, this class of ligands has already demonstrated its impressive capabilities in homogeneous catalysis, particularly in palladium-catalyzed coupling reactions. Their increased donor capacity compared to traditional trialkylphosphines enables their palladium complexes to easily activate the otherwise less reactive aryl chlorides, making these substrates accessible for new applications at milder reaction conditions. The modular structure of YPhos ligands, in combination with their straightforward preparation, allows the fine-tuning of their properties and hence their easy optimization for different applications. This flexibility of the YPhos ligands is important for future catalyst design, in particular computationally derived structure predictions based on structure–activity relationships.

Related Products
Loading

References

1.
Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V. 2012. Palladium‐Catalyzed Cross‐Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. Angew Chem Int Ed. 51(21):5062-5085. https://doi.org/10.1002/anie.201107017
2.
(a) Littke AF, Dai C, Fu GC. 2000. Versatile Catalysts for the Suzuki Cross-Coupling of Arylboronic Acids with Aryl and Vinyl Halides and Triflates under Mild Conditions. J. Am. Chem. Soc.122:4020–4028. https://doi.org/10.1021/ja0002058. (b) Schoenebeck F, Houk KN. 2010. Ligand-Controlled Regioselectivity in Palladium-Catalyzed Cross Coupling Reactions. J. Am. Chem. Soc.132:2496−2497. https://doi.org/10.1021/ja9077528
3.
Littke AF, Fu GC. 1998. A convenient and general method for Pd‐catalyzed Suzuki cross‐couplings of aryl chlorides and arylboronic acids. Angew. Chem., Int. Ed. 373387−3388. https://doi.org/10.1002/(SICI)1521-3773(19981231)37:24<3387::AIDANIE3387> 3.0.CO;2-P.
4.
de Meijere A, Diederich F. 2004. Metal‐Catalyzed Cross‐Coupling Reactions. https://doi.org/10.1002/9783527619535
5.
Hazari N, Melvin PR, Beromi MM. Well-defined nickel and palladium precatalysts for cross-coupling. Nat Rev Chem. 1(3): https://doi.org/10.1038/s41570-017-0025
6.
Amatore C, Azzabi M, Jutand A. 1991. Role and effects of halide ions on the rates and mechanisms of oxidative addition of iodobenzene to low-ligated zerovalent palladium complexes Pd0(PPh3)2. J. Am. Chem. Soc. 113(22):8375-8384. https://doi.org/10.1021/ja00022a026
7.
Tolman CA. 1977. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem. Rev. 77(3):313-348. https://doi.org/10.1021/cr60307a002
8.
Nelson DJ, Nolan SP. 2013. Quantifying and understanding the electronic properties of N-heterocyclic carbenes. Chem. Soc. Rev. 42(16):6723. https://doi.org/10.1039/c3cs60146c
9.
Durand DJ, Fey N. 2019. Computational Ligand Descriptors for Catalyst Design. Chem. Rev. 119(11):6561-6594. https://doi.org/10.1021/acs.chemrev.8b00588
10.
Hillier AC, Sommer WJ, Yong BS, Petersen JL, Cavallo L, Nolan SP. 2003. A Combined Experimental and Theoretical Study Examining the Binding of N-Heterocyclic Carbenes (NHC) to the Cp*RuCl (Cp* = η5-C5Me5) Moiety:  Insight into Stereoelectronic Differences between Unsaturated and Saturated NHC Ligands. Organometallics. 22(21):4322-4326. https://doi.org/10.1021/om034016k
11.
Verloop A. 1972. The Use of Linear Free Energy Parameters and Other Experimental Constants in Structure–Activity Studies. Drug Design.133-187. https://doi.org/10.1016/b978-0-12-060303-9.50008-2
12.
Brethomé AV, Fletcher SP, Paton RS. 2019. Conformational Effects on Physical-Organic Descriptors: The Case of Sterimol Steric Parameters. ACS Catal. 9(3):2313-2323. https://doi.org/10.1021/acscatal.8b04043
13.
Dubbaka SR. 2005. Tri-tert-butylphosphine [P(t-Bu)3]: An Electron-Rich Ligand for Palladium in Cross-Coupling Reactions. Synlett.(4):709-710. https://doi.org/10.1055/s-2005-863725
14.
(a) Stambuli JP, Stauffer SR, Shaughnessy KH, Hartwig JF. 2001. Screening of Homogeneous Catalysts by Fluorescence Resonance Energy Transfer. Identification of Catalysts for Room-Temperature Heck Reactions. J. Am. Chem. Soc. 123:2677–2678. https://doi.org/10.1021/ja0058435. (b) Sather AC, Lee HG, De La Rosa VY, Yang Y, Müller P, Buchwald SL. 2015. A Fluorinated Ligand Enables Room-Temperature and Regioselective Pd-Catalyzed Fluorination of Aryl Triflates and Bromides. J. Am. Chem. Soc. 137:13433–13438. https://doi.org/10.1021/jacs.5b09308. (c) Surry DS, Buchwald SL. 2008. Biaryl Phosphane Ligands in Palladium-Catalyzed Amination. Angew. Chem., Int. Ed. 47:6338–6361. https://doi.org/10.1002/anie.200800497
15.
(a) Ehrentraut A, Zapf A, Beller M. 2002. A New Improved Catalyst for the Palladium-Catalyzed Amination of Aryl Chlorides. J. Mol. Catal. A: Chem. 182–183:515–523. https://doi.org/10.1016/S1381-1169(01)00503-9. (b) Tewari A, Hein M, Zapf A, Beller M. 2004. General Synthesis and Catalytic Applications of Di(1-adamantyl) alkylphosphines and Their Phosphonium Salts. Synthesis. 935–941. https://doi.org/10.1055/s-2004-822313
16.
Chen L, Ren P, Carrow BP. 2016. Tri(1-adamantyl)phosphine: Expanding the Boundary of Electron-Releasing Character Available to Organophosphorus Compounds. J. Am. Chem. Soc. 138(20):6392-6395. https://doi.org/10.1021/jacs.6b03215
17.
Perry GL, Schley ND. 2023. Tris(bicyclo[1.1.1]pentyl)phosphine: An Exceptionally Small Tri-tert-alkylphosphine and Its Bis-Ligated Pd(0) Complex. J. Am. Chem. Soc. 145(12):7005-7010. https://doi.org/10.1021/jacs.3c00885
18.
Surry DS, Buchwald SL. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user's guide. Chem. Sci. 2(1):27-50. https://doi.org/10.1039/c0sc00331j
19.
Pérez‐Galán P, Delpont N, Herrero‐Gómez E, Maseras F, Echavarren A. 2010. Metal–Arene Interactions in Dialkylbiarylphosphane Complexes of Copper, Silver, and Gold. Chemistry A European J. 16(18):5324-5332. https://doi.org/10.1002/chem.200903507
20.
(a) Shelby Q, Kataoka N, Mann G, Hartwig J. 2000. Unusual in Situ Ligand Modification to Generate a Catalyst for Room Temperature Aromatic C—O Bond Formation. J. Am. Chem. Soc. 122:10718–10719. https://doi.org/10.1021/ja002543e. (b) Lundgren RJ, Hesp KD, Stradiotto M. 2011. Design of New ‘DalPhos’ P,N-Ligands: Applications in Transition-Metal Catalysis. Synlett. 2443–2458. https://doi.org/10.1055/s-0030-1260321. (c) Zapf A, Jackstell R, Rataboul F, Riermeier T, Monsees A, Fuhrmann C, Shaikh N, Dingerdissen U, Beller M. 2004. Practical Synthesis of New and Highly Efficient Ligands for the Suzuki Reaction of Aryl Chlorides. Chem. Commun. 38–39. https://doi.org/10.1039/b311268n.
21.
Examples of Other Electron-rich Phosphines with Unconventional Substituents: (a) Wünsche MA, Mehlmann P, Witteler T, Buß F, Rathmann P, Dielmann F. 2015. Imidazolin-2-ylidenaminophosphines as Highly Electron-Rich Ligands for Transition-Metal Catalysts. Angew. Chem., Int. Ed. 54:11857–11860. https://doi.org/10.1002/anie.201504993. (b) Ullrich S, Kovačević B, Xie X, Sundermeyer J. 2019. Phosphazenyl Phosphines: The Most Electron-Rich Uncharged Phosphorus Brønsted and Lewis Bases. Angew. Chem., Int. Ed. 58:10335–10339. https://doi.org/10.1002/anie.201903342. (c) Schulz J, Clauss R, Kazimir A, Holzknecht S, Hey-Hawkins E. 2023. On the Edge of the Known: Extremely Electron-Rich (Di)Carboranyl Phosphines. Angew. Chem., Int. Ed. 62:e202218648. https://doi.org/10.1002/anie.202218648
22.
Sarbajna A, Swamy VSVSN, Gessner VH. Phosphorus-ylides: powerful substituents for the stabilization of reactive main group compounds. Chem. Sci. 12(6):2016-2024. https://doi.org/10.1039/d0sc03278f
23.
Scherpf T, Schwarz C, Scharf LT, Zur J, Helbig A, Gessner VH. 2018. Ylide‐Functionalized Phosphines: Strong Donor Ligands for Homogeneous Catalysis. Angew Chem Int Ed. 57(39):12859-12864. https://doi.org/10.1002/anie.201805372
24.
Examples of applications of YPhos in gold catalysis: (a) Handelmann J, Naga Babu C, Steinert H, Schwarz C, Scherpf T, Kroll A, Gessner VH. 2021. Towards the Rational Design of Ylide-Substituted Phosphines for Gold(I)-Catalysis: from Inactive to ppm-Level Catalysis. Chem. Sci. 12:4329–4337. https://doi.org/10.1039/D1SC00105A. (b) Darmandeh H, Löffler J, Tzouras NV, Dereli B, Scherpf T, Feichtner KS, Vanden Broeck S, Van Hecke K, Saab M, Cazin CSJ, Cavallo L, Nolan SP, Gessner VH. 2021. Au···H—C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angew. Chem., Int. Ed. 60:21014–21024. https://doi.org/10.1002/anie.202108581. (c) Schwarz C, Handelmann J, Baier DM, Ouissa A, Gessner VH. 2019. Monoand Diylide-Substituted Phosphines (YPhos): Impact of the Ligand Properties on the Catalytic Activity in Gold(I)-Catalysed Hydroaminations. Catal. Sci. Technol. 9:6808–6815. https://doi.org/10.1039/C9CY01861A
25.
(a) Ruiz-Castillo P, Buchwald SL. 2016. Applications of Palladium-Catalyzed C−N Cross-Coupling Reactions. Chem. Rev. 116:12564–12649. https://doi.org/10.1021/acs.chemrev.6b00512. (b) Heravi MM, Kheilkordi Z, Zadsirjan V, Heydari M, Malmir M. 2018. Buchwald-Hartwig reaction: An overview. J. Organomet. Chem. 861:17–104. https://doi.org/10.1016/j.jorganchem.2018.02.023
26.
Weber P, Scherpf T, Rodstein I, Lichte D, Scharf LT, Gooßen LJ, Gessner VH. 2019. A Highly Active Ylide‐Functionalized Phosphine for Palladium‐Catalyzed Aminations of Aryl Chlorides. Angew Chem Int Ed. 58(10):3203-3207. https://doi.org/10.1002/anie.201810696
27.
Scharf LT, Rodstein I, Schmidt M, Scherpf T, Gessner VH. 2020. Unraveling the High Activity of Ylide-Functionalized Phosphines in Palladium-Catalyzed Amination Reactions: A Comparative Study with CyJohnPhos and PtBu3. ACS Catal. 10(2):999-1009. https://doi.org/10.1021/acscatal.9b04666
28.
Proutiere F, Lyngvi E, Aufiero M, Sanhueza IA, Schoenebeck F. 2014. Combining the Reactivity Properties of PCy3 and PtBu3 into a Single Ligand, P(iPr)(tBu)2. Reaction via Mono- or Bisphosphine Palladium(0) Centers and Palladium(I) Dimer Formation. Organometallics. 33(23):6879-6884. https://doi.org/10.1021/om5009605
29.
Tappen J, Rodstein I, McGuire K, Großjohann A, Löffler J, Scherpf T, Gessner VH. 2020. Palladium Complexes Based on Ylide‐Functionalized Phosphines (YPhos): Broadly Applicable High‐Performance Precatalysts for the Amination of Aryl Halides at Room Temperature. Chemistry A European J. 26(19):4281-4288. https://doi.org/10.1002/chem.201905535
30.
Rodstein I, Prendes DS, Wickert L, Paaßen M, Gessner VH. 2020. Selective Pd-Catalyzed Monoarylation of Small Primary Alkyl Amines through Backbone-Modification in Ylide-Functionalized Phosphines (YPhos). J. Org. Chem. 85(22):14674-14683. https://doi.org/10.1021/acs.joc.0c01771
31.
(a) Wang J, Liu K, MA L, Zhan X. 2016. Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells. Chem. Rev. 116:14675–14725. https://doi.org/10.1021/acs.chemrev.6b00432. (b) Allard S, Forster M, Souharce B, Thiem H, Scherf U. 2008. Organic Semiconductors for Solution-Processable Field-Effect Transistors (OFETs). Angew. Chem., Int. Ed. 47:4070–4098. https://doi.org/10.1002/anie.200701920. (c) Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes, AB. 2009. Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices. Chem. Rev. 109:897–1091. https://doi.org/10.1021/cr000013v
32.
Neigenfind P, Knyszek D, Handelmann J, Gessner VH. Synthesis of sterically encumbered di- and triarylamines by palladium-catalysed C–N coupling reactions under mild reaction conditions. Catal. Sci. Technol. 12(11):3447-3453. https://doi.org/10.1039/d1cy02352g
33.
Takada I, Ueda N. June 28, 2007. Organic light-emitting material and method for producing an organic material. [Internet]. U.S. Patent Appl. US2007/0149815A1. Available from: https://patentimages.storage.googleapis.com/48/2b/58/b170f902c443ea/US20070149815A1.pdf
34.
Kawatsura M, Hartwig JF. 1999. Simple, Highly Active Palladium Catalysts for Ketone and Malonate Arylation:  Dissecting the Importance of Chelation and Steric Hindrance. J. Am. Chem. Soc. 121(7):1473-1478. https://doi.org/10.1021/ja983378u
35.
Palucki M, Buchwald SL. 1997. Palladium-Catalyzed α-Arylation of Ketones. J. Am. Chem. Soc. 119(45):11108-11109. https://doi.org/10.1021/ja972593s
36.
Ehrentraut A, Zapf A, Beller M. 2002. Progress in the Palladium-Catalyzed α-Arylation of Ketones with Chloroarenes. Advanced Synthesis & Catalysis. 344(2):209-217. https://doi.org/10.1002/1615-4169(200202)344:2%3C209::AID-ADSC209%3E3.0.CO;2-5
37.
Hu X, Lichte D, Rodstein I, Weber P, Seitz A, Scherpf T, Gessner VH, Gooßen LJ. 2019. Ylide-Functionalized Phosphine (YPhos)–Palladium Catalysts: Selective Monoarylation of Alkyl Ketones with Aryl Chlorides. Org. Lett. 21(18):7558-7562. https://doi.org/10.1021/acs.orglett.9b02830
38.
Wei X, Xue B, Handelmann J, Hu Z, Darmandeh H, Gessner VH, Gooßen LJ. 2022. Ylide‐Functionalized Diisopropyl Phosphine (prYPhos): A Ligand for Selective Suzuki‐Miyaura Couplings of Aryl Chlorides. Adv Synth Catal. 364(19):3336-3341. https://doi.org/10.1002/adsc.202200321
39.
Reeves EK, Entz ED, Neufeldt SR. 2021. Chemodivergence between Electrophiles in Cross‐Coupling Reactions. Chemistry A European J. 27(20):6161-6177. https://doi.org/10.1002/chem.202004437
40.
Proutiere F, Schoenebeck F. 2011. Solvent Effect on Palladium‐Catalyzed Cross‐Coupling Reactions and Implications on the Active Catalytic Species. Angew Chem Int Ed. 50(35):8192-8195. https://doi.org/10.1002/anie.201101746
41.
Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. 2010. Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile Pharmacophore. J. Med. Chem. 53(22):7902-7917. https://doi.org/10.1021/jm100762r
42.
Hatanaka Y, Hiyama T. 1988. Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris(diethylamino)sulfonium difluorotrimethylsilicate. J. Org. Chem. 53(4):918-920. https://doi.org/10.1021/jo00239a056
43.
Wu L, Hartwig JF. 2005. Mild Palladium-Catalyzed Selective Monoarylation of Nitriles. J. Am. Chem. Soc. 127(45):15824-15832. https://doi.org/10.1021/ja053027x
44.
Goebel JF, Löffler J, Zeng Z, Handelmann J, Hermann A, Rodstein I, Gensch T, Gessner VH, Gooßen LJ. 2023. Computer‐Driven Development of Ylide Functionalized Phosphines for Palladium‐Catalyzed Hiyama Couplings. Angew Chem Int Ed. 62(9): https://doi.org/10.1002/anie.202216160
45.
Hu Z, Wei X, Handelmann J, Seitz A, Rodstein I, Gessner VH, Gooßen LJ. 2021. Coupling of Reformatsky Reagents with Aryl Chlorides Enabled by Ylide‐Functionalized Phosphine Ligands. Angew Chem Int Ed. 60(12):6778-6783. https://doi.org/10.1002/anie.202016048
46.
Murahashi S, Yamamura M, Yanagisawa K, Mita N, Kondo K. 1979. Stereoselective synthesis of alkenes and alkenyl sulfides from alkenyl halides using palladium and ruthenium catalysts. J. Org. Chem. 44(14):2408-2417. https://doi.org/10.1021/jo01328a016
47.
Hazra S, Johansson Seechurn CCC, Handa S, Colacot TJ. 2021. The Resurrection of Murahashi Coupling after Four Decades. ACS Catal. 11(21):13188-13202. https://doi.org/10.1021/acscatal.1c03564
48.
Giannerini M, Fañanás-Mastral M, Feringa BL. 2013. Direct catalytic cross-coupling of organolithium compounds. Nature Chem. 5(8):667-672. https://doi.org/10.1038/nchem.1678
49.
Scherpf T, Steinert H, Großjohann A, Dilchert K, Tappen J, Rodstein I, Gessner VH. 2020. Efficient Pd‐Catalyzed Direct Coupling of Aryl Chlorides with Alkyllithium Reagents. Angew Chem Int Ed. 59(46):20596-20603. https://doi.org/10.1002/anie.202008866
50.
Pompeo M, Froese RDJ, Hadei N, Organ MG. 2012. Pd‐PEPPSI‐IPentCl: A Highly Effective Catalyst for the Selective Cross‐Coupling of Secondary Organozinc Reagents. Angew Chem Int Ed. 51(45):11354-11357. https://doi.org/10.1002/anie.201205747
Sign In To Continue

To continue reading please sign in or create an account.

Don't Have An Account?