Skip to Content

尊敬的客户:

目前国际形势复杂多变,关税政策尚不明朗,这可能对我们的产品价格产生一定影响。在此情况下,我们希望就订单事宜与您进行友好沟通。

基于当前的不确定性,如果您选择在此期间下单,我们将保留根据实际情况调整价格的权利。同时,我们也理解市场变化可能给您带来的困扰,因此如果在订单实际发货前因关税政策变动导致价格出现较大波动,默克将与您进行协商讨论并视情况对订单进行调整或取消。

We are planning system maintenance between Friday, Apr 18 at 9:00 PM CDT and Saturday, Apr 19 at 9:00 AM CDT. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

关于应对近期政策变化的重要更新,请点击此处查看详情。

Merck
CN
  • Role of hyaluronidase in subcutaneous spread and growth of group A streptococcus.

Role of hyaluronidase in subcutaneous spread and growth of group A streptococcus.

Infection and immunity (2005-12-22)
Clarise Rivera Starr, N Cary Engleberg
ABSTRACT

Group A streptococcus (GAS) depends on a hyaluronic acid (HA) capsule to evade phagocytosis and to interact with epithelial cells. Paradoxically, GAS also produces hyaluronidase (Hyl), an enzyme that cleaves HA. A common assumption is that Hyl digests structurally identical HA in human tissue to promote bacterial spread. We inactivated the gene encoding extracellular hyaluronidase, hylA, in a clinical Hyl(+) isolate. Hyl(+) and an isogenic Hyl(-) mutant were injected subcutaneously into mice with or without high-molecular-weight dextran blue. The Hyl(-) strain produced small lesions with dye concentrated in close proximity. The Hyl(+) strain produced identical lesions, but the dye diffused subcutaneously. However, Hyl(+) bacteria were not isolated from unaffected skin stained by dye diffusion. Thus, Hyl digests tissue HA and facilitates spread of large molecules but is not sufficient to cause subcutaneous diffusion of bacteria or to affect lesion size. GAS capsule expression was assayed periodically during broth culture and was reduced in Hyl(+) strains relative to Hyl(-) strains at the onset and the end of active capsule synthesis but not during peak synthesis in mid-exponential phase. Thus, Hyl is not sufficiently active to remove capsule during peak synthesis. To demonstrate a possible nutritional role for Hyl, GAS was shown to grow with N-acetylglucosamine but not d-glucuronic acid (both components of HA) as a sole carbon source. However, only Hyl(+) strains could grow utilizing HA as a sole carbon source, suggesting that Hyl may permit the organism to utilize host HA or its own capsule as an energy source.