Skip to Content
Merck
CN
  • Liver-specific mono-unsaturated fatty acid synthase-1 inhibitor for anti-hepatitis C treatment.

Liver-specific mono-unsaturated fatty acid synthase-1 inhibitor for anti-hepatitis C treatment.

Antiviral research (2016-07-10)
Yasunori Nio, Hikari Hasegawa, Hitomi Okamura, Yohei Miyayama, Yuichi Akahori, Makoto Hijikata
ABSTRACT

Recently, direct antiviral agents against hepatitis C virus (HCV) infection have been developed as highly effective anti-HCV drugs. However, the appearance of resistant viruses against direct anti-viral agents is an unsolved problem. One of the strategies considered to suppress the emergence of the drug-resistant viruses is to use drugs inhibiting the host factor, which contributes to HCV proliferation, in combination with direct anti-viral agents. The replication complex was reported to be present in the membranous compartment in the cells. Thus, lipid metabolism modulators are good candidates to regulate virus assembly and HCV replication. Recent studies have shown that stearoyl-CoA desaturase (SCD), an enzyme for long-chain mono-unsaturated fatty acid (LCMUFA) synthesis, is a key factor that defines HCV replication efficiency. Systemic exposure to SCD-1 inhibor induces some side effects in the eyes and skin. Thus, systemic SCD-1 inhibitors are considered inappropriate for HCV therapy. To avoid the side effects of systemic SCD-1 inhibitors, the liver-specific SCD-1 inhibitor, MK8245, was synthesized; it showed antidiabetic effects in diabetic model mice with no side effects. In the phase 1 clinical study on measurement of MK8245 tolerability, no significant side effects were reported (ClinicalTrials.gov Identifier: NCT00790556). Therefore, we thought liver-specific SCD-1 inhibitors would be suitable agents for HCV-infected patients. MK8245 was evaluated using recombinant HCV culture systems. Considering current HCV treatments, to avoid the emergence of direct anti-viral agents-resistant viruses, combination therapy with direct anti-viral agents and host-targeted agents would be optimal. With this viewpoint, we confirmed MK8245's additive or synergistic anti-HCV effects on current direct anti-viral agents and interferon-alpha therapy. The results suggest that MK8245 is an option for anti-HCV multi-drug therapy with a low risk of emergence of drug-resistant HCV without significant side effects.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
CP-640186 hydrochloride, ≥95% (HPLC)