- Simultaneous determination of ozone and carbonyls using trans-1,2-bis(4-pyridyl)ethylene as an ozone scrubber for 2,4-dinitrophenylhydrazine-impregnated silica cartridge.
Simultaneous determination of ozone and carbonyls using trans-1,2-bis(4-pyridyl)ethylene as an ozone scrubber for 2,4-dinitrophenylhydrazine-impregnated silica cartridge.
A new method for the simultaneous determination of ozone and carbonyls in air using a two-bed cartridge system has been developed. Each bed consists of reagent-impregnated silica particles. The first contains trans-1,2-bis-(4-pyridyl) ethylene (BPE) while the second contains 2,4-dinitrophenylhydrazine (DNPH). Air samples are drawn through the cartridge first through the BPE and then through the DNPH. Ozone in the air sample is trapped in the first bed by the BPE-coated silica particles and produce pyridine-4-aldehyde. Airborne carbonyls pass unimpeded thorough the BPE and are trapped in the second bed by the DNPH-coated silica particles. They produce carbonyl 2,4-DNPhydrazones. DNPH and carbonyl 2,4-DNPhydrazones are not influenced by ozone because of effective trapping by the BPE. Extraction is performed in the direction reverse to air sampling. When solvent is eluted through the BEP/DNPH cartridge, excess DNPH is washed into the BPE bed where it reacted with pyridine-4-aldehyde and forms the corresponding hydrazone derivative. All of the hydrazones derived from airborne carbonyls and pyridine-4-aldehyde (derived from ozone) are completely separated and measured using high-performance liquid chromatography. An Ascentis RP-Amide column is used, and the mobile phase is 40% aqueous acetonitrile containing 2 mmol/L ammonium acetate. The use of a BPE/DNPH cartridge has made possible the simultaneous determination of ozone and carbonyls. A separate ozone scrubber is not necessary with the BPE/DNPH cartridge because the BPE portion of the sampler serves this function.