Skip to Content
Merck
CN
  • Direct Downregulation of B-Cell Translocation Gene 3 by microRNA-93 Is Required for Desensitizing Esophageal Cancer to Radiotherapy.

Direct Downregulation of B-Cell Translocation Gene 3 by microRNA-93 Is Required for Desensitizing Esophageal Cancer to Radiotherapy.

Digestive diseases and sciences (2017-04-24)
Hujun Cui, Shengqiang Zhang, Hongbo Zhou, Ling Guo
ABSTRACT

Esophageal squamous carcinoma (ESC) is one of the most fatal malignancies worldwide with increasing occurrences yet poor outcome. MicroRNAs were reported to play roles in ESC. We aimed to understand how miRNAs affect the radiotherapy resistance of ESC. MicroRNA assays, real-time PCR, and Western blot were performed for expression analysis of miR-93 and BTG3. Luciferase activity assay was conducted with mutated B-cell translocation gene 3 (BTG3) 3'-UTR sequence in the 3' end of luciferase sequence with miR-93 inhibitor. ESC cells were treated with irradiation (IR) and clonogenic assay was utilized to detect the cell viability. Human ESC xenograft mouse model was established and subjected to target IR treatment followed by tumor size analysis. MiR-93 was decreased and BTG3 was increased in ESC cells, with negative correlation of their expression in ESC tissues. MiR-93 directly targeted BTG3 3'-UTR by luciferase activity assay. Either miR-93 inhibition or BTG3 overexpression decreased radiation resistance. Furthermore, miR-93 inhibition suppressed radiation resistance through BTG3. Direct downregulation of BTG3 by miR-93 is able to render ESC resistant to radiotherapy, and both BTG3 and miR-93 may potentially serve as clinical markers for ESC and contribute to the treatment of ESC.