Skip to Content
Merck
CN
  • Solutal and thermal buoyancy effects in self-powered phosphatase micropumps.

Solutal and thermal buoyancy effects in self-powered phosphatase micropumps.

Soft matter (2017-03-28)
Lyanne Valdez, Henry Shum, Isamar Ortiz-Rivera, Anna C Balazs, Ayusman Sen
ABSTRACT

Immobilized enzymes generate net fluid flow when exposed to specific reagents in solution. Thus, they function as self-powered platforms that combine sensing and on-demand fluid pumping. To uncover the mechanism of pumping, we examine the effects of solutal and thermal buoyancy on the behavior of phosphatase-based micropumps, using a series of reactants with known thermodynamic and kinetic parameters. By combining modeling and experiments, we perform the first quantitative comparison of thermal and solutal effects in an enzyme micropump system. Despite the significant exothermicity of the catalyzed reactions, we find that thermal effects play a minimal role in the observed fluid flow. Instead, fluid transport in phosphatase micropumps is governed by the density difference between the reactants and the products of the reaction. This surprising conclusion suggests new design principles for catalytic pumps.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1-Naphthyl phosphate, 99%
Sigma-Aldrich
p-Nitrophenyl Phosphate Liquid Substrate System, liquid