Skip to Content
Merck
CN
  • Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy.

Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy.

Materials science & engineering. C, Materials for biological applications (2017-02-12)
Peter Minárik, Eva Jablonská, Robert Král, Jan Lipov, Tomáš Ruml, Carsten Blawert, Branislav Hadzima, František Chmelík
ABSTRACT

Effect of processing by equal channel angular pressing (ECAP) on the degradation behaviour of extruded LAE442 magnesium alloy was investigated in a 0.1M NaCl solution, Kirkland's biocorrosion medium (KBM) and Minimum Essential Medium (MEM), both with and without 10% of foetal bovine serum (FBS). Uniform degradation of as extruded and ECAP processed samples in NaCl solution was observed, nevertheless higher corrosion resistance was found in the latter material. The increase of corrosion resistance due to ECAP was observed also after 14-days immersion in all media used. Higher compactness of the corrosion layer formed on the samples after ECAP was responsible for the observed decrease of corrosion resistance, which was proven by scanning electron microscope investigation. Lower corrosion rate in media with FBS was observed and was explained by additional effect of protein incorporation on the corrosion layer stability. A cytotoxicity test using L929 cells was carried out to investigate possible effect of processing on the cell viability. Sufficient cytocompatibility of the extruded samples was observed with no adverse effects of the subsequent ECAP processing. In conclusion, this in vitro study proved that the degradation behaviour of the LAE442 alloy could be improved by subsequent ECAP processing and this material is a good candidate for future in vivo investigation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
StableCell MEM, With Earle′s salts, stable glutamine, and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture