- Synergistic cytotoxicity of BIIB021 with triptolide through suppression of PI3K/Akt/mTOR and NF-κB signal pathways in thyroid carcinoma cells.
Synergistic cytotoxicity of BIIB021 with triptolide through suppression of PI3K/Akt/mTOR and NF-κB signal pathways in thyroid carcinoma cells.
The effec.t of BIIB021, a novel heat shock protein 90 (hsp90) inhibitor, on survival of thyroid carcinoma cells has not been evaluated. In this study, the impact of BIIB021 alone or in combination with the histone acetyltransferase inhibitor triptolide on survival of thyroid carcinoma cells was identified. In 8505C and TPC-1 thyroid carcinoma cells, BIIB021 caused cell death in conjunction with alterations in expression of hsp90 client proteins. Cotreatment of both BIIB021 and triptolide, compared with treatment of BIIB021 alone, decreased cell viability, and increased the percentage of dead cells and cytotoxic activity. All of the combination index values were lower than 1.0, suggesting synergistic activity of BIIB021 with triptolide in induction of cytotoxicity. In treatment of both BIIB021 and triptolide, compared with treatment of BIIB021 alone, the protein levels of total and phospho-p53, and cleaved caspase-3 were elevated, while those of total Akt, phospho-mTOR, phospho-4EBP1, phospho-S6K, phospho-NF-κB, survivin, X-linked inhibitor of apoptosis protein (xIAP), cellular inhibitor of apoptosis protein (cIAP) and acetyl. histone H4 were reduced. These results suggest that BIIB021 has a cytotoxic activity accompanied by regulation of hsp90 client proteins in thyroid carcinoma cells. Moreover, the synergism between BIIB021 and triptolide in induction of cytotoxicity is associated with the inhibition of PI3K/Akt/mTOR and NF-κB signal pathways, the underexpression of survivin and the activation of DNA damage response in thyroid carcinoma cells.