Skip to Content
Merck
CN
  • Involvement of microRNA-135a-5p in the Protective Effects of Hydrogen Sulfide Against Parkinson's Disease.

Involvement of microRNA-135a-5p in the Protective Effects of Hydrogen Sulfide Against Parkinson's Disease.

Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology (2016-11-15)
Yuanyuan Liu, Shengtao Liao, Hongyu Quan, Yuhan Lin, Jian Li, Qingshan Yang
ABSTRACT

Development of effective therapeutic drugs for Parkinson's disease is in great need. During the progression of Parkinson's disease, Rho-associated protein kinase 2 (ROCK2) is activated to promote neurodegeneration. Hydrogen sulfide (H2S) has a neuroprotective effect during the neural injury of Parkinson's disease. However, the mechanisms that underlie the effects of ROCK2 and H2S remain ill-defined. In the current study, we addressed these questions. We used a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse subacute model of Parkinson's disease to study the effects of H2S on astrocytic activation in the mouse striatum, on the levels of tyrosine-hydroxylase (TH)-positive neuron loss, on the apomorphine-induced rotational behavior of the mice, and on the changes in ROCK2 and miR-135a-5p expression. Plasmid transfection was applied to modify miR-135a-5p levels in a neuronal cell line HCN-1A. Bioinformatics analysis was performed to predict the relationship between ROCK2 and miR-135a-5p in neuronal cells, and then was confirmed by luciferase reporter assay. H2S alleviated MPTP-induced astrocytic activation in the mouse striatum, alleviated the increases in TH-positive neuron loss, and improved the apomorphine-induced rotational behavior of the mice. H2S significantly attenuated the increases in ROCK2 and the decreases in miR-135a-5p by MPTP. MiR-135a-5p targeted the 3'-UTR of ROCK2 mRNA to inhibit its translation in neuronal cells. MiR-135a-5p-regulated ROCK2 may play a role in the protective effects of hydrogen sulfide against Parkinson's disease.