Skip to Content
Merck
CN
  • A Synergistic Effect of Surfactant and ZrO2 Underlayer on Photocurrent Enhancement and Cathodic Shift of Nanoporous Fe2O3 Photoanode.

A Synergistic Effect of Surfactant and ZrO2 Underlayer on Photocurrent Enhancement and Cathodic Shift of Nanoporous Fe2O3 Photoanode.

Scientific reports (2016-09-01)
Pravin S Shinde, Su Yong Lee, Sun Hee Choi, Hyun Hwi Lee, Jungho Ryu, Jum Suk Jang
ABSTRACT

Augmenting the donor density and nanostructure engineering are the crucial points to improve solar water oxidation performance of hematite (α-Fe2O3). This work addresses the sluggish water oxidation reaction associated with hematite photoanode by tweaking its internal porosity. The porous hematite photoanodes are fabricated by a novel synthetic strategy via pulse reverse electrodeposition (PRED) method that involves incorporation of a cationic CTAB surfactant in a sulfate electrolyte and spin-coated ZrO2 underlayer (UL) on FTO. CTAB is found to be beneficial in promoting the film growth rate during PRED. Incorporation of Zr(4+) ions from ZrO2 UL and Sn(4+) ions from FTO into the Fe2O3 lattice via solid-state diffusion reaction during pertinent annihilation of surfactant molecules at 800 °C produced internally porous hematite films with improved carrier concentration. The porous hematite demonstrated a sustained photocurrent enhancement and a significant cathodic shift of 130 mV relative to the planar hematite under standard illumination conditions (AM 1.5G) in 1 M NaOH electrolyte. The absorption, electrochemical impedance spectroscopy and Mott-Schottky analyses revealed that the ZrO2 UL and CTAB not only increased the carrier density and light harvesting but also accelerated the surface oxidation reaction kinetics, synergistically boosting the performance of internally porous hematite photoanodes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Zirconyl nitrate solution, 35 wt. % in dilute nitric acid, ≥99% trace metals basis