Skip to Content
Merck
CN
  • Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging.

Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging.

Journal of biomedical optics (2014-10-08)
Jenu Varghese Chacko, Benjamin Harke, Claudio Canale, Alberto Diaspro
ABSTRACT

Atomic force microscopes (AFM) provide topographical and mechanical information of the sample with very good axial resolution, but are limited in terms of chemical specificity and operation time-scale. An optical microscope coupled to an AFM can recognize and target an area of interest using specific identification markers like fluorescence tags. A high resolution fluorescence microscope can visualize fluorescence structures or molecules below the classical optical diffraction limit and reach nanometer scale resolution. A stimulated emission depletion (STED) microscopy superresolution (SR) microscope coupled to an AFM is an example in which the AFM tip gains nanoscale manipulation capabilities. The SR targeting and visualization ability help in fast and specific identification of subdiffraction-sized cellular structures and manoeuvring the AFM tip onto the target. We demonstrate how to build a STED AFM and use it for biological nanomanipulation aided with fast visualization. The STED AFM based bionanomanipulation is presented for the first time in this article. This study points to future nanosurgeries performable at single-cell level and a physical targeted manipulation of cellular features as it is currently used in research domains like nanomedicine and nanorobotics.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Abberior® STAR 635, NHS ester, for STED application
Sigma-Aldrich
Abberior® STAR 635, phalloidin, for STED application