- Excess of miRNA-378a-5p perturbs mitotic fidelity and correlates with breast cancer tumourigenesis in vivo.
Excess of miRNA-378a-5p perturbs mitotic fidelity and correlates with breast cancer tumourigenesis in vivo.
Optimal expression and proper function of key mitotic proteins facilitate control and repair processes that aim to prevent loss or gain of chromosomes, a hallmark of cancer. Altered expression of small regulatory microRNAs is associated with tumourigenesis and metastasis but the impact on mitotic signalling has remained unclear. Cell-based high-throughput screen identified miR-378a-5p as a mitosis perturbing microRNA. Transient transfections, immunofluorescence, western blotting, time-lapse microscopy, FISH and reporter assays were used to characterise the mitotic anomalies by excess miR-378a-5p. Analysis of microRNA profiles in breast tumours was performed. Overexpression of miR-378a-5p induced numerical chromosome changes in cells and abrogated taxol-induced mitotic block via premature inactivation of the spindle assembly checkpoint. Moreover, excess miR-378a-5p triggered receptor tyrosine kinase-MAP kinase pathway signalling, and was associated with suppression of Aurora B kinase. In breast cancer in vivo, we found that high miR-378a-5p levels correlate with the most aggressive, poorly differentiated forms of cancer. Downregulation of Aurora B by excess miR-378a-5p can explain the observed microtubule drug resistance and increased chromosomal imbalance in the microRNA-overexpressing cells. The results suggest that breast tumours may deploy high miR-378a-5p levels to gain growth advantage and antagonise taxane therapy.