- Classical sheep scrapie in Great Britain: spatial analysis and identification of environmental and farm-related risk factors.
Classical sheep scrapie in Great Britain: spatial analysis and identification of environmental and farm-related risk factors.
Previous studies suggest that the spatial distribution of classical sheep scrapie in Great Britain is uneven and that certain flock characteristics may be associated with occurrence of the disease. However, the existence of areas of high and low disease-risk may also result from differences in the spatial distribution of environmental characteristics. In this study we explored the spatial pattern of classical scrapie in Great Britain between 2002 and 2005 and investigated the association between disease occurrence and various environmental and farm-related risk factors. Exploratory spatial analysis: South Wales was found to have a higher density of scrapie-positive farms than the rest of Great Britain. In addition, a small cluster of high-risk farms was identified in the center of this region in which clustering of scrapie-positive farms occurred up to a distance of approximately 40 km. SPATIAL MODELLING: A mixed-effects regression model identified flock-size and soil drainage to be significantly associated with the occurrence of scrapie in England and Wales (area under the curve (AUC) 0.71 +/- 0.01, 95% CI 0.68 - 0.74). The predictive risk map based on the estimated association between these factors and disease occurrence showed most of Wales to be at risk of being confirmed positive for scrapie with areas of highest risk in central and south Wales. In England, areas with the highest risk occurred mainly in the north and the midlands. The observed distribution of scrapie in Great Britain exhibited a definite spatial pattern with south Wales identified as an area of high occurrence. In addition both flock (flock size) and environmental variables (soil drainage) were found to be significantly associated with the occurrence of the disease. However, the model's AUC indicated unexplained variation remaining in the model and the source of this variation may lie in farm-level characteristics rather than spatially-varying ones such as environmental factors.