Skip to Content
Merck
CN
  • Deficiency of Neuronal p38α MAPK Attenuates Amyloid Pathology in Alzheimer Disease Mouse and Cell Models through Facilitating Lysosomal Degradation of BACE1.

Deficiency of Neuronal p38α MAPK Attenuates Amyloid Pathology in Alzheimer Disease Mouse and Cell Models through Facilitating Lysosomal Degradation of BACE1.

The Journal of biological chemistry (2015-12-15)
Laura Schnöder, Wenlin Hao, Yiren Qin, Shirong Liu, Inge Tomic, Xu Liu, Klaus Fassbender, Yang Liu
ABSTRACT

Amyloid β (Aβ) damages neurons and triggers microglial inflammatory activation in the Alzheimer disease (AD) brain. BACE1 is the primary enzyme in Aβ generation. Neuroinflammation potentially up-regulates BACE1 expression and increases Aβ production. In Alzheimer amyloid precursor protein-transgenic mice and SH-SY5Y cell models, we specifically knocked out or knocked down gene expression of mapk14, which encodes p38α MAPK, a kinase sensitive to inflammatory and oxidative stimuli. Using immunological and biochemical methods, we observed that reduction of p38α MAPK expression facilitated the lysosomal degradation of BACE1, decreased BACE1 protein and activity, and subsequently attenuated Aβ generation in the AD mouse brain. Inhibition of p38α MAPK also enhanced autophagy. Blocking autophagy by treating cells with 3-methyladenine or overexpressing dominant-negative ATG5 abolished the deficiency of the p38α MAPK-induced BACE1 protein reduction in cultured cells. Thus, our study demonstrates that p38α MAPK plays a critical role in the regulation of BACE1 degradation and Aβ generation in AD pathogenesis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Phosphoserine antibody produced in rabbit, 250 μg/mL, affinity isolated antibody