Skip to Content
Merck
CN
  • Echistatin prevents posterior capsule opacification in diabetic rabbit model via integrin linked kinase signaling pathway.

Echistatin prevents posterior capsule opacification in diabetic rabbit model via integrin linked kinase signaling pathway.

International journal of clinical and experimental pathology (2016-01-30)
Fengbin Lin, Yingying Chen, Hao Liang, Shaojian Tan
ABSTRACT

To investigate the effect of disintegrin echistatin on integrin linked kinase (ILK) and subsequent PI3-K/Akt and ERK1/2 signaling pathways in the posterior capsule opacification (PCO) model of diabetic rabbit. 56 rabbits were injected alloxan to model diabetic. Then they accepted lens extraction surgery and randomly and intraoperatively injected distilled water (control group; n = 28) or 10.0 mg·L(-1) echistatin (echistatin-treated group; n = 28) into the anterior chamber. Each group was subdivided into ten days group (n = 14) and six weeks group (n = 14) respectively. The PCO severity was evaluated with a slit lamp microscope and light microscope for 10 days and 6 weeks postoperatively. The levels of ILK in the posterior capsule were determined by Q-PCR, Western blotting and Immunohistochemistry. Akt and ERK1/2 phosphorylation were analyzed by Western blotting. 10 days and 6 weeks after surgery, the grades of PCO in the echistatin-treated group were lower than the control group. The lens epithelial cells (LECs) in the posterior capsule of echistatin-treated eyes had decreased degrees of proliferation and migration than the control group. And no significant side effects appeared after treated with echistatin. Echistatin could significantly reduce the expression of ILK in terms of both mRNA and protein levels. The phosphorylation levels of Akt and ERK1/2 were decreased in the echistatin-treated group compared with the control group. Echistatin could inhibit postoperative PCO occurrence and development in diabetic rabbit eyes, which may be related to down-regulation the expression of ILK and inhibition the PI3-K/Akt and ERK1/2 pathways.