- Diacerhein and rhein prevent interleukin-1beta-induced nuclear factor-kappaB activation by inhibiting the degradation of inhibitor kappaB-alpha.
Diacerhein and rhein prevent interleukin-1beta-induced nuclear factor-kappaB activation by inhibiting the degradation of inhibitor kappaB-alpha.
Diacerhein and rhein are anthraquinone compounds that ameliorate the course of osteoarthritis. Recent reports also suggest that these compounds may have antiinflammatory properties, but the cellular mechanisms by which they exert antiosteoarthritic and possibly antiinflammatory effects are still incompletely understood. The purpose of this study was to investigate the ability of diacerhein and rhein to inhibit the activation of the transcription factor nuclear factor kappaB, induced by the proinflammatory cytokine interleukin-1beta, in primary monolayer cultures of bovine articular chondrocytes. We also studied the ability of diacerhein and rhein to prevent the expression of the inducible nitric oxide synthase gene, which is driven by nuclear factor-kappaB. We observed that interleukin-1beta induced the degradation of the inhibitor kappaB-alpha protein and the translocation of the protein p65 (a member of the nuclear factor-kappaB family) to the nucleus, which were inhibited by diacerhein and rhein, in a dose-dependent manner. Interleukin-1beta-induced nuclear factor-kappaB binding to a specific (gamma-(32)P)-labelled oligonucleotide probe was also inhibited by treatment of chondrocytes with diacerhein or rhein, as revealed by electrophoretic mobility shift assay. Inducible nitric oxide synthase mRNA and protein synthesis and nitric oxide production were also inhibited by diacerhein and rhein, in a dose-dependent manner. The half-maximal inhibitory concentrations of diacerhein and rhein, relative to nitric oxide production, were 8.2 microM ;and 7.7 microM, respectively. These results suggest that diacerhein and rhein inhibit nuclear factor-kappaB activation and, consequently, the expression of nuclear factor-kappaB-dependent genes, such as the inducible nitric oxide synthase gene, which can explain their antiosteoarthritic and antiinflammatory effects.