- Amphiphilic fullerene/ZnO hybrids as cathode buffer layers to improve charge selectivity of inverted polymer solar cells.
Amphiphilic fullerene/ZnO hybrids as cathode buffer layers to improve charge selectivity of inverted polymer solar cells.
Two types of novel fullerene derivative/ZnO hybrids were prepared by physically blending amphiphilic fullerene-end-capped poly(ethylene glycol) (C60-PEG) with ZnO nanocrystals (ZnO/C60-PEG) and by in situ grown ZnO from C60-PEG (ZnO@C60-PEG) at relatively low temperatures. The C60-PEG could act as n-doping on the ZnO while the PEG side chain of C60-PEG could passivate the defects of the ZnO at the same time, consequently increasing the lowest unoccupied molecular orbital (LUMO) level. Compared with the ZnO/C60-PEG by the physical blend approach, the ZnO@C60-PEG by the growth approach showed a more favorable morphology and higher electron mobility by developing a homogeneous network. As a consequence, the efficiency of the inverted polymer solar cells based on thieno[3,4-b]-thiophene/benzodithiophene (PTB7):[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) is raised to 8.0% for the ZnO@C60-PEG cathode buffer layer and to 7.5% for the ZnO/C60-PEG cathode buffer layer with improved long-term stability.