Skip to Content
Merck
CN
  • Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells.

Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells.

The Journal of cell biology (2014-03-05)
Debora Keller, Meritxell Orpinell, Nicolas Olivier, Malte Wachsmuth, Robert Mahen, Romain Wyss, Virginie Hachet, Jan Ellenberg, Suliana Manley, Pierre Gönczy
ABSTRACT

SAS-6 proteins are thought to impart the ninefold symmetry of centrioles, but the mechanisms by which their assembly occurs within cells remain elusive. In this paper, we provide evidence that the N-terminal, coiled-coil, and C-terminal domains of HsSAS-6 are each required for procentriole formation in human cells. Moreover, the coiled coil is necessary and sufficient to mediate HsSAS-6 centrosomal targeting. High-resolution imaging reveals that GFP-tagged HsSAS-6 variants localize in a torus around the base of the parental centriole before S phase, perhaps indicative of an initial loading platform. Moreover, fluorescence recovery after photobleaching analysis demonstrates that HsSAS-6 is immobilized progressively at centrosomes during cell cycle progression. Using fluorescence correlation spectroscopy and three-dimensional stochastic optical reconstruction microscopy, we uncover that HsSAS-6 is present in the cytoplasm primarily as a homodimer and that its oligomerization into a ninefold symmetrical ring occurs at centrioles. Together, our findings lead us to propose a mechanism whereby HsSAS-6 homodimers are targeted to centrosomes where the local environment and high concentration of HsSAS-6 promote oligomerization, thus initiating procentriole formation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-CEP152 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution