Skip to Content
Merck
CN
  • MCP-1 stimulates spinal microglia via PI3K/Akt pathway in bone cancer pain.

MCP-1 stimulates spinal microglia via PI3K/Akt pathway in bone cancer pain.

Brain research (2015-01-04)
Di Jin, Jian-Ping Yang, Ji-Hua Hu, Li-Na Wang, Jian-Ling Zuo
ABSTRACT

Accumulating evidence suggests that chemokine monocyte chemoattractant protein-1 (MCP-1) is significantly involved in the activation of spinal microglia associated with pathological pain, at the same time that the phosphatidylinositol 3-kinase/Protein Kinase B (PI3K/Akt) pathway localized in spinal microglia is involved in both neuropathic and inflammatory pain. However, whether there is a connection between MCP-1 and the PI3K/Akt pathway and in their underlying mechanisms in bone cancer pain (BCP) has not yet been elucidated. In the current study, we investigated the expression changes of p-Akt in microglia and OX-42 (microglia marker) after being stimulated with MCP-1 in vitro, as well as in a BCP model that was established by an intramedullary injection of mammary gland carcinoma cells(Walker 256 cells) into the tibia of rats. We observed a significant increase in expression levels of p-Akt and OX-42 in microglia as well as in spinal dorsal horns of BCP rats. Furthermore, the intrathecal administration of an anti-MCP-1 neutralizing antibody or PI3K inhibitor LY294002 reduced the expression of p-Akt or OX-42, and LY294002 attenuated the mechanical allodynia of BCP rats. These results suggest that MCP-1 may stimulate spinal microglia via the PI3K/Akt pathway in BCP.