Skip to Content
Merck
CN
  • Phosphorylation on Ser5 increases the F-actin-binding activity of L-plastin and promotes its targeting to sites of actin assembly in cells.

Phosphorylation on Ser5 increases the F-actin-binding activity of L-plastin and promotes its targeting to sites of actin assembly in cells.

Journal of cell science (2006-04-26)
Bassam Janji, Adeline Giganti, Veerle De Corte, Marie Catillon, Erik Bruyneel, Delphine Lentz, Julie Plastino, Jan Gettemans, Evelyne Friederich
ABSTRACT

L-plastin, a malignant transformation-associated protein, is a member of a large family of actin filament cross-linkers. Here, we analysed how phosphorylation of L-plastin on Ser5 of the headpiece domain regulates its intracellular distribution and its interaction with F-actin in transfected cells and in in vitro assays. Phosphorylated wild-type L-plastin localised to the actin cytoskeleton in transfected Vero cells. Ser5Ala substitution reduced the capacity of L-plastin to localise with peripheral actin-rich membrane protrusions. Conversely, a Ser5Glu variant mimicking a constitutively phosphorylated state, accumulated in actin-rich regions and promoted the formation of F-actin microspikes in two cell lines. Similar to phosphorylated wild-type L-plastin, this variant remained associated with cellular F-actin in detergent-treated cells, whereas the Ser5Ala variant was almost completely extracted. When compared with non-phosphorylated protein, phosphorylated L-plastin and the Ser5Glu variant bound F-actin more efficiently in an in vitro assay. Importantly, expression of L-plastin elicited collagen invasion in HEK293T cells, in a manner dependent on Ser5 phosphorylation. Based on our findings, we propose that conversely to other calponin homology (CH)-domain family members, phosphorylation of L-plastin switches the protein from a low-activity to a high-activity state. Phosphorylated L-plastin might act as an integrator of signals controlling the assembly of the actin cytoskeleton and cell motility in a 3D-space.