- Colloidal nanocrystals with inorganic halide, pseudohalide, and halometallate ligands.
Colloidal nanocrystals with inorganic halide, pseudohalide, and halometallate ligands.
We investigate simple halides and pseudohalides as an important class of inorganic ligands for nanocrystals (NCs) in solution phase ligand exchange. These short, robust, and easy to model ligands bind to the NC surface and provide electrostatic stabilization of NC dispersions in N-methylformamide. The replacement of organic ligands on NCs with compact halide and pseudohalide ligands greatly facilitates electronic communication between NCs. For example, a high electron mobility of μ ≈ 12 cm(2) V(-1) s(-1) has been observed in thin films made of I(-)-capped CdSe NCs. We also studied charge transport properties of thin films based on the pseudohalide N3(-)-capped InAs NCs, suggesting the possibility of obtaining "all III-V" NC solids. In addition, we extend the surface chemistry of halometallates (e.g., CH3NH3PbI3), which can stabilize colloidal solutions of lead chalcogenide NCs. These halide, pseudohalide, and halometallate ligands enrich the current family of inorganic ligands and can open up more opportunities for applications of NCs in the fields of electronics, optoelectronics, and thermoelectrics.