Skip to Content
Merck
CN
  • Budding yeast kinetochore proteins, Chl4 and Ctf19, are required to maintain SPB-centromere proximity during G1 and late anaphase.

Budding yeast kinetochore proteins, Chl4 and Ctf19, are required to maintain SPB-centromere proximity during G1 and late anaphase.

PloS one (2014-07-09)
Soumitra Sau, Sabyasachi Sutradhar, Raja Paul, Pratima Sinha
ABSTRACT

In the budding yeast, centromeres stay clustered near the spindle pole bodies (SPBs) through most of the cell cycle. This SPB-centromere proximity requires microtubules and functional kinetochores, which are protein complexes formed on the centromeres and capable of binding microtubules. The clustering is suggested by earlier studies to depend also on protein-protein interactions between SPB and kinetochore components. Previously it has been shown that the absence of non-essential kinetochore proteins of the Ctf19 complex weakens kinetochore-microtubule interaction, but whether this compromised interaction affects centromere/kinetochore positioning inside the nucleus is unknown. We found that in G1 and in late anaphase, SPB-centromere proximity was disturbed in mutant cells lacking Ctf19 complex members,Chl4p and/or Ctf19p, whose centromeres lay further away from their SPBs than those of the wild-type cells. We unequivocally show that the SPB-centromere proximity and distances are not dependent on physical interactions between SPB and kinetochore components, but involve microtubule-dependent forces only. Further insight on the positional difference between wild-type and mutant kinetochores was gained by generating computational models governed by (1) independently regulated, but constant kinetochore microtubule (kMT) dynamics, (2) poleward tension on kinetochore and the antagonistic polar ejection force and (3) length and force dependent kMT dynamics. Numerical data obtained from the third model concurs with experimental results and suggests that the absence of Chl4p and/or Ctf19p increases the penetration depth of a growing kMT inside the kinetochore and increases the rescue frequency of a depolymerizing kMT. Both the processes result in increased distance between SPB and centromere.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
3-Amino-1,2,4-triazole, ≥95% (TLC)
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥98.5% (GC)
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥99.0% (T)
Supelco
Amitrol, PESTANAL®, analytical standard
Sigma-Aldrich
Nocodazole, ≥99% (TLC), powder
Sigma-Aldrich
IPTG, ≥99% (TLC), ≤0.1% Dioxane
Sigma-Aldrich
Isopropyl β-D-1-thiogalactopyranoside, ≥99% (TLC)
Sigma-Aldrich
Isopropyl β-D-thiogalactopyranoside solution, ReadyMade IPTG solution for Blue-white screening
Isopropyl β-D-thiogalactoside, Vetec, reagent grade, ≥99%
Sigma-Aldrich
4H-1,2,4-Triazol-3-amine, AldrichCPR
SAFC
Isopropyl β-D-1-thiogalactopyranoside
Trapidil impurity B, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
DAPI, for nucleic acid staining