Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

For important updates on recent policy changes, please click here for more details.

Merck
CN
  • Modulation of biofilm-formation in Salmonella enterica serovar Typhimurium by the periplasmic DsbA/DsbB oxidoreductase system requires the GGDEF-EAL domain protein STM3615.

Modulation of biofilm-formation in Salmonella enterica serovar Typhimurium by the periplasmic DsbA/DsbB oxidoreductase system requires the GGDEF-EAL domain protein STM3615.

PloS one (2014-08-26)
Naeem Anwar, Syed Fazle Rouf, Ute Römling, Mikael Rhen
ABSTRACT

In Salmonella enterica serovar Typhimurium (S. Typhimurium), biofilm-formation is controlled by the cytoplasmic intracellular small-molecular second messenger cyclic 3', 5'-di- guanosine monophosphate (c-di-GMP) through the activities of GGDEF and EAL domain proteins. Here we describe that deleting either dsbA or dsbB, respectively encoding a periplasmic protein disulfide oxidase and a cytoplasmic membrane disulfide oxidoreductase, resulted in increased biofilm-formation on solid medium. This increased biofilm-formation, defined as a red, dry and rough (rdar) colony morphotype, paralleled with enhanced expression of the biofilm master regulator CsgD and the biofilm-associated fimbrial subunit CsgA. Deleting csgD in either dsb mutant abrogated the enhanced biofilm-formation. Likewise, overexpression of the c-di-GMP phosphodiesterase YhjH, or mutationally inactivating the CsgD activator EAL-domain protein YdiV, reduced biofilm-formation in either of the dsb mutants. Intriguingly, deleting the GGDEF-EAL domain protein gene STM3615 (yhjK), previously not connected to rdar morphotype development, also abrogated the escalated rdar morphotype formation in dsb mutant backgrounds. Enhanced biofilm-formation in dsb mutants was furthermore annulled by exposure to the protein disulfide catalyst copper chloride. When analyzed for the effect of exogenous reducing stress on biofilm-formation, both dsb mutants initially showed an escalated rdar morphotype development that later dissolved to reveal a smooth mucoid colony morphotype. From these results we conclude that biofilm-development in S. Typhimurium is affected by periplasmic protein disulphide bond status through CsgD, and discuss the involvement of selected GGDEF/EAL domain protein(s) as signaling mediators.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-(+)-Arabinose, ≥99% (GC)
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPriceQuantity
25 g
Available to ship on April 18, 2025
Details...
CN¥623.60
100 g
Available to ship on April 18, 2025
Details...
CN¥1,927.54
500 g
Please contact Customer Service for Availability
CN¥7,284.27
1 kg
Available to ship on April 18, 2025
Details...
CN¥12,642.59
Sigma-Aldrich
L-(+)-Arabinose, Vetec, reagent grade, ≥99%
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPriceQuantity
25 g
Available to ship on April 18, 2025
Details...
CN¥623.60
100 g
Available to ship on April 18, 2025
Details...
CN¥1,927.54
500 g
Please contact Customer Service for Availability
CN¥7,284.27
1 kg
Available to ship on April 18, 2025
Details...
CN¥12,642.59