Skip to Content
Merck
CN

Childhood obesity: impact on cardiac geometry and function.

JACC. Cardiovascular imaging (2014-10-13)
Norman Mangner, Kathrin Scheuermann, Ephraim Winzer, Isabel Wagner, Robert Hoellriegel, Marcus Sandri, Marion Zimmer, Meinhard Mende, Axel Linke, Wieland Kiess, Gerhard Schuler, Antje Körner, Sandra Erbs
ABSTRACT

The aim of our study was to assess geometric and functional changes of the heart in obese compared with nonobese children and adolescents. Obesity in children and adolescents has increased over the past decades and is considered a strong risk factor for future cardiovascular morbidity and mortality. Obesity has been associated with myocardial structural alterations that may influence cardiac mechanics. We prospectively recruited 61 obese (13.5 ± 2.7 years of age, 46% male sex, SD score body mass index, 2.52 ± 0.60) and 40 nonobese (14.1 ± 2.8 years of age, 50% male sex, SD score body mass index, -0.33 ± 0.83) consecutive, nonselected Caucasian children and adolescents. A standardized 2-dimensional (2D) echocardiography and 2D speckle-tracking analysis was performed in all children. Furthermore, blood chemistry including lipid and glucose metabolism was assessed in all children. Compared with nonobese children, blood pressure, low-density lipoprotein cholesterol, and parameters of glucose metabolism were significantly increased in obese children, whereas high-density lipoprotein cholesterol was significantly lower. Compared with nonobese children, obese children were characterized by enlarged left- and right-sided cardiac chambers, thicker left ventricular walls, and, consequently, increased left ventricular mass. Despite a comparable left ventricular ejection fraction, decreased tissue Doppler-derived peak systolic velocity and regional basoseptal strain were found in obese children compared with nonobese children. Beyond that, 2D speckle tracking-derived longitudinal (-18.2 ± 2.0 vs. -20.5 ± 2.3, p < 0.001) and circumferential (-17.0 ± 2.7 vs. -19.5 ± 2.9, p < 0.001) strain of the left ventricle was reduced in obese children compared with nonobese children. Diastolic function was also impaired in obese compared with nonobese children. Both longitudinal strain and circumferential strain were independently associated with obesity. The results of this study demonstrate that childhood obesity is associated with significant changes in myocardial geometry and function, indicating an early onset of potentially unfavorable alterations in the myocardium.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tolylene-2,4-diisocyanate, technical grade, 80%