- Cellugyrin and synaptogyrin facilitate targeting of synaptophysin to a ubiquitous synaptic vesicle-sized compartment in PC12 cells.
Cellugyrin and synaptogyrin facilitate targeting of synaptophysin to a ubiquitous synaptic vesicle-sized compartment in PC12 cells.
Cellugyrin represents a ubiquitously expressed four-transmembrane domain protein that is closely related to synaptic vesicle protein synaptogyrin and, more remotely, to synaptophysin. We report here that, in PC12 cells, cellugyrin is localized in synaptic-like microvesicles (SLMVs), along with synaptogyrin and synaptophysin. Upon overexpression of synaptophysin in PC12 cells, it is localized in rapidly sedimenting membranes and practically is not delivered to the SLMVs. On the contrary, the efficiency of the SLMV targeting of exogenously expressed cellugyrin and synaptogyrin is high. Moreover, expression of cellugyrin (or synaptogyrin) in PC12 cells dramatically and specifically increases SLMV targeting of endogenous synaptophysin. Finally, we utilized the SLMV purification scheme on a series of non-neuroendocrine cell types including the mouse fibroblast cell line 3T3-L1, the Chinese hamster ovary cell line CHO-K1, and the monkey kidney epithelial cell line COS7 and found that a cellugyrin-positive microvesicular compartment was present in all cell types tested. We suggest that synaptic vesicles have evolved from cellugyrin-positive ubiquitous microvesicles and that neuroendocrine SLMVs represent a step along that pathway of evolution.