Skip to Content
Merck
CN
  • Degradation characteristics of alpha and beta tri-calcium-phosphate (TCP) in minipigs.

Degradation characteristics of alpha and beta tri-calcium-phosphate (TCP) in minipigs.

Journal of biomedical materials research (2002-03-01)
J Wiltfang, H A Merten, K A Schlegel, S Schultze-Mosgau, F R Kloss, S Rupprecht, P Kessler
ABSTRACT

In seven Goettingen minipigs 3.5--4.7-ml cancellous bone defects were created in the area of the tibial head on both sides. The defects were filled with alpha-TCP or beta-TCP (tricalciumphosphate). ITI implants (Straumann, Freiburg, Germany) of 3.2 x 12-mm length were inserted into the underlying ceramic substitutes. Two additional pigs were used as control. Within the periods of observation (4, 16, 20, 28, 46, 68, and 86 weeks) fluorescent dyes were applied. Nondecalcified thin-sliced sections were examined by means of light and fluorescence microscopy. In addition microangiography and microradiography were performed. Bony regeneration occurred basally and on the sides of the defect according the angiogenetic reossification pattern. Resorption was due to a hydrolytic and cellular degradation process. After 46 weeks histomorphological evaluation showed an incomplete osseointegration of the simultaneously implanted dental implants. The bone contact surface ratio was lower than 25%. After 86 weeks 95--97% of both alpha- and beta-TCP were resorbed. Ceramic residuals stayed within the newly formed trabeculae thus resisting further degradation until remodeling occurred. Both alpha- and beta-TCP show a comparable degradation process. At the 86-week postoperative point only small residuals of the ceramic can be found. These residuals stay within the newly formed trabeculae, which show a functional orientation. In comparison control defects showed only sparse reossification. The beta-TCP material shows an accelerated degradation mode and has an optimal reactivity with the surrounding tissues. According to the results of this animal experiment both materials can be classified as bone-rebuilding materials.