Skip to Content
Merck
CN
  • Use of hydrophilic natural gums in formulation of sustained-release matrix tablets of tramadol hydrochloride.

Use of hydrophilic natural gums in formulation of sustained-release matrix tablets of tramadol hydrochloride.

AAPS PharmSciTech (2006-04-06)
Jaleh Varshosaz, Naser Tavakoli, Fatemeh Kheirolahi
ABSTRACT

The objective of this work was to develop matrix sustained-release tablets of highly water-soluble tramadol HCl using natural gums (xanthan [X gum] and guar [G gum]) as cost-effective, nontoxic, easily available, and suitable hydrophilic matrix systems compared with the extensively investigated hydrophilic matrices (ie, hydroxypropyl methylcellulose [HPMC]/carboxymethyl cellulose [CMC] with respect to in vitro drug release rate) and hydration rate of the polymers. Matrix tablets of tramadol (dose 100 mg) were produced by direct compression method. Different ratios of 100:0, 80:20, 60:40, 20:80, 0:100 of G gum (or X):HPMC, X gum:G gum, and triple mixture of these polymers (G gum, X gum, HPMC) were applied. After evaluation of physical characteristics of tablets, the dissolution test was performed in the phosphate buffer media (pH 7.4) up to 8 hours. Tablets with only X had the highest mean dissolution time (MDT), the least dissolution efficiency (DE(8)%), and released the drug following a zero-order model via swelling, diffusion, and erosion mechanisms. Guar gum alone could not efficiently control the drug release, while X and all combinations of natural gums with HPMC could retard tramadol HCl release. However, according to the similarity factor (f(2) ), pure HPMC and H(8)G(2) were the most similar formulations to Topalgic-LP as the reference standard.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magnesium stearate, technical grade