Skip to Content
Merck
CN
  • GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans.

GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans.

Diabetes (2014-07-30)
Liselotte van Bloemendaal, Richard G IJzerman, Jennifer S Ten Kulve, Frederik Barkhof, Robert J Konrad, Madeleine L Drent, Dick J Veltman, Michaela Diamant
ABSTRACT

Gut-derived hormones, such as GLP-1, have been proposed to relay information to the brain to regulate appetite. GLP-1 receptor agonists, currently used for the treatment of type 2 diabetes (T2DM), improve glycemic control and stimulate satiety, leading to decreases in food intake and body weight. We hypothesized that food intake reduction after GLP-1 receptor activation is mediated through appetite- and reward-related brain areas. Obese T2DM patients and normoglycemic obese and lean individuals (n = 48) were studied in a randomized, crossover, placebo-controlled trial. Using functional MRI, we determined the acute effects of intravenous administration of the GLP-1 receptor agonist exenatide, with or without prior GLP-1 receptor blockade using exendin 9-39, on brain responses to food pictures during a somatostatin pancreatic-pituitary clamp. Obese T2DM patients and normoglycemic obese versus lean subjects showed increased brain responses to food pictures in appetite- and reward-related brain regions (insula and amygdala). Exenatide versus placebo decreased food intake and food-related brain responses in T2DM patients and obese subjects (in insula, amygdala, putamen, and orbitofrontal cortex). These effects were largely blocked by prior GLP-1 receptor blockade using exendin 9-39. Our findings provide novel insights into the mechanisms by which GLP-1 regulates food intake and how GLP-1 receptor agonists cause weight loss.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Exendin Fragment 9-39, ≥95% (HPLC)