Skip to Content
Merck
CN
  • Improved cell survival and paracrine capacity of human embryonic stem cell-derived mesenchymal stem cells promote therapeutic potential for pulmonary arterial hypertension.

Improved cell survival and paracrine capacity of human embryonic stem cell-derived mesenchymal stem cells promote therapeutic potential for pulmonary arterial hypertension.

Cell transplantation (2012-07-11)
Yuelin Zhang, Songyan Liao, Mo Yang, Xiaoting Liang, Ming-Wai Poon, Chee-Yin Wong, Junwen Wang, Zhongjun Zhou, Soon-Keng Cheong, Chuen-Neng Lee, Hung-Fat Tse, Qizhou Lian
ABSTRACT

Although transplantation of adult bone marrow mesenchymal stem cells (BM-MSCs) holds promise in the treatment for pulmonary arterial hypertension (PAH), the poor survival and differentiation potential of adult BM-MSCs have limited their therapeutic efficiency. Here, we compared the therapeutic efficacy of human embryonic stem cell-derived MSCs (hESC-MSCs) with adult BM-MSCs for the treatment of PAH in an animal model. One week following monocrotaline (MCT)-induced PAH, mice were randomly assigned to receive phosphate-buffered saline (MCT group); 3.0×10(6) human BM-derived MSCs (BM-MSCs group) or 3.0×10(6) hESC-derived MSCs (hESC-MSCs group) via tail vein injection. At 3 weeks post-transplantation, the right ventricular systolic pressure (RVSP), degree of RV hypertrophy, and medial wall thickening of pulmonary arteries were lower=, and pulmonary capillary density was higher in the hESC-MSC group as compared with BM-MSC and MCT groups (all p < 0.05). At 1 week post-transplantation, the number of engrafted MSCs in the lungs was found significantly higher in the hESC-MSC group than in the BM-MSC group (all p < 0.01). At 3 weeks post-transplantation, implanted BM-MSCs were undetectable whereas hESC-MSCs were not only engrafted in injured pulmonary arteries but had also undergone endothelial differentiation. In addition, protein profiling of hESC-MSC- and BM-MSC-conditioned medium revealed a differential paracrine capacity. Classification of these factors into bioprocesses revealed that secreted factors from hESC-MSCs were preferentially involved in early embryonic development and tissue differentiation, especially blood vessel morphogenesis. We concluded that improved cell survival and paracrine capacity of hESC-MSCs provide better therapeutic efficacy than BM-MSCs in the treatment for PAH.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Nuclei Antibody, clone 235-1, clone 235-1, Chemicon®, from mouse