- Optimization of separation and migration behavior of chloropyridines in micellar electrokinetic chromatography.
Optimization of separation and migration behavior of chloropyridines in micellar electrokinetic chromatography.
The separation and migration behavior of pyridine and eight chloropyridines, including three monochloropyridines, four dichloropyridines, and 2,3,5-trichloropyridine were investigated by micellar electrokinetic chromatography using either sodium dodecyl sulfate (SDS) as an anionic surfactant or SDS-Brij 35 mixed micelles. Various parameters such as buffer pH, SDS concentration, Brij 35 concentration and methanol content that affect the separation were optimized. Complete separation of these chloropyridines was optimally achieved with a phosphate buffer containing SDS (30 mM) and methanol (10%, v/v) at pH 7.0. The resolution and selectivity of analytes could be considerably affected by the addition of methanol and/or Brij 35 to the background electrolyte. The migration order of these chloropyridines depends primarily on their hydrophobicity. However, electrostatic interactions may also play a significant role in the determination of the migration order of the positional isomers of chloropyridines.