- Protocatechuic acid inhibits lung cancer cells by modulating FAK, MAPK, and NF-κB pathways.
Protocatechuic acid inhibits lung cancer cells by modulating FAK, MAPK, and NF-κB pathways.
Cytotoxic effects of protocatechuic acid (PCA) upon 3 nonsmall cell lung cancer (NSCLC) cell lines, A549, H3255, and Calu-6 cell lines, were examined. PCA at 1, 2, 4, and 8 μM was used to treat these cells. Results showed that PCA dose-dependently reduced cell growth; and at 2-8 μM enhanced protein expression of Bax and cleaved caspase-3; as well as diminished Bcl-2 expression. This compound destabilized mitochondrial membrane via increasing caspase-3 activity, decreasing mitochondrial membrane potential and Na(+)-K(+)-ATPase activity in these cells. PCA treatments dose-dependently decreased protein expression of vascular endothelial growth factor and fibronectin, as well as lowered interleukin (IL)-6 and IL-8 release; and at 2-8 μM suppressed protein expression of basic fibroblast growth factor, matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, PCA treatments dose-dependently downregulated nuclear factor kappa (NF-κ)B p50 and NF-κB p65 protein expression, and at 2-8 μM suppressed protein expression of p-p38, p-JNK, and p-focal adhesion kinase (FAK). Our data revealed that PCA declined FAK, mitogen-activated protein kinase, and NF-κB activation, which subsequently decreased the production of cytokines and growth factors, and consequently inhibited proliferation of 3 test NSCLC cells. These findings suggest that PCA could provide wide-ranging anti-NSCLC potency.