- Partial denaturation of small chromatin fragments: direct evidence for the radial distribution of nucleosomes in folded chromatin fibers.
Partial denaturation of small chromatin fragments: direct evidence for the radial distribution of nucleosomes in folded chromatin fibers.
To examine the internal structure of chromatin fibers, we have developed procedures for partial denaturation of small chromatin fragments (8-30 nucleosomes) from chicken erythrocytes. Electron micrographs of samples prepared under conditions that cause nucleosome dissociation show rods and loops projecting from short compact fibers fixed by glutaraldehyde in 1.7 mM Mg2+. According to previous studies in our laboratory, these images correspond to the top view of partially denatured fibers. Our results indicate that rods and loops consist of extended duplex DNA of different lengths. DNA in loops is nicked, as demonstrated by experiments performed in the presence of high concentrations of ethidium bromide. Length measurements indicate that the radial projections of DNA are produced by unfolding of nucleosomal units. Loops are formed by DNA from denatured nucleosomes in internal positions of the fiber; DNA from denatured nucleosomes in terminal positions form rods. Our micrographs show clearly a radial distribution of DNA loops and rods projecting from fibers. Rods are orthogonal to the surface of the chromatin fragments. Considering that the high ionic strength used in this study (0.8-2.0 M NaCl) neutralizes the electrostatic repulsions between rods and fiber, this observation suggests that rods are extensions of nucleosomes radially organized inside the fiber. The position of the entry points of DNA loops into the fiber could be influenced by constraint on loops, but our results showing that the arc that separates these points in dinucleosome loops is relatively short suggest that consecutive nucleosomes are relatively close to each other in the folded fiber.