Skip to Content
Merck
CN
  • Effect of the pyrrole polymerization mechanism on the antioxidative activity of nonenzymatic browning reactions.

Effect of the pyrrole polymerization mechanism on the antioxidative activity of nonenzymatic browning reactions.

Journal of agricultural and food chemistry (2003-09-04)
Francisco J Hidalgo, Fátima Nogales, Rosario Zamora
ABSTRACT

The present investigation was undertaken to study how the antioxidative activity (AA) of nonenzymatic browning reactions is changing at the same time that the browning (by the pyrrole polymerization mechanism) is being produced. The antioxidative activities of eight model pyrroles (pyrrole, 1-methylpyrrole, 2,5-dimethylpyrrole, 1,2,5-trimethylpyrrole, 2-acetylpyrrole, 2-acetyl-1-methylpyrrole, pyrrole-2-carboxaldehyde, and 1-methyl-2-pyrrolecarboxaldehyde) as well as the browning reaction of 2-(1-hydroxyethyl)-1-methylpyrrole (HMP) and the dimer (DIM) produced during HMP browning were determined. The results obtained suggest that the AAs observed in nonenzymatic browning reactions are the result of the AAs of the different oxidized lipid/amino acid reaction products formed. Thus, the different pyrrole derivatives produced in these reactions had different AAs, and the highest AAs were observed for alkyl-substituted pyrroles without free alpha-positions. Because some of these pyrrole derivatives are implicated in nonenzymatic browning production and this browning production implies the loss of hydroxyl groups and the transformation of some pyrroles with one type of substitution into others, changes in AA during browning production were observed, and the resulting DIM derivative was more antioxidant than HMP or higher polymers. These results explain the AA observed in fatty acid/protein mixtures after slight oxidation and suggest that, when the pyrrole polymerization mechanism is predominant, slightly browned samples may be more antioxidant than samples in which nonenzymatic browning has been highly developed.