Skip to Content
Merck
CN
  • Decarboxylative polymerization of 2,6-naphthalenedicarboxylic acid at surfaces.

Decarboxylative polymerization of 2,6-naphthalenedicarboxylic acid at surfaces.

Journal of the American Chemical Society (2014-06-18)
Hong-Ying Gao, Philipp Alexander Held, Marek Knor, Christian Mück-Lichtenfeld, Johannes Neugebauer, Armido Studer, Harald Fuchs
ABSTRACT

Metal-catalyzed polymerization of 2,6-naphthalenedicarboxylic acid (NDCA) to form poly-2,6-naphthalenes at various surfaces is reported. Polymerizations occur via initial formal dehydrogenation of self-assembled diacids with subsequent decarboxylation to give polymeric bisnaphthyl-Cu species at elevated temperature as intermediate structures (<160 °C). Further temperature increase eventually leads to poly-naphthalenes via reductive elimination. It is demonstrated that the Cu(111) surface works most efficiently to conduct such polymerizations as compared to the Au(111), Ag(111), Cu(100), and Cu(110) surfaces. Poly-2,6-naphthalene with a chain length of over 50 nm is obtained by using this approach. The decarboxylative coupling of aromatic diacids is a very promising tool which further enlarges the portfolio of reactions allowing for on-surface polymerizations and novel organometallic systems preparations.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2,6-Naphthalenedicarboxylic acid, 95%