- Synthesis and properties of water-soluble core-shell-shell silica-CdSe/CdS-silica nanoparticles.
Synthesis and properties of water-soluble core-shell-shell silica-CdSe/CdS-silica nanoparticles.
This paper describes the synthesis of highly water-soluble and fluorescent core-shell-shell silica-CdSe/CdS-silica nanoparticles (CSS silica-QDs-silica NPs). We used cadmium nitrate and 1,1-dimethyl-2-selenourea precursors to synthesize CdSe quantum dots (QDs) in aqueous solution under simultaneous illumination with a diode-pumped solid state green laser and a Xe-Hg lamp. After passivation of the CdSe QDs with CdS, the CdSe/CdS QDs were then conjugated covalently to (3-mercaptopropyl)trimethoxysilane (MPS); we call these nanoparticles "MPS-QDs". We mixed the MPS-QDs with tetraethoxysilane (TEOS), ethanol, and NH3. By controlling the concentrations of the reagents, the stirring speed, and the reaction time, we synthesized CSS silica-QDs-silica NPs having sizes ranging from 75 to 190 nm. The incubation time for preparing the MPS-QDs and their concentrations are important parameters in determining the morphologies of the CSS silica-QDs-silica NPs. When we mixed 50 nM MPS-QDs, 1.1 mM TEOS, and 78 mM NH3 and reacted them at a stirring speed of 750 rpm, we obtained 85-nm-diameter CSS silica-QDs-silica NPs having a QD shell thickness of about 20 nm. The CSS silica-QDs-silica NPs provide a strong photoluminescence intensity (quantum yield 88%) and exhibit enhanced stability both photochemically and in high-conductivity media (e.g., 1.0 M NaCl).