Skip to Content
Merck
CN
  • Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity.

Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity.

Optics express (2009-12-10)
K Pradeesh, J J Baumberg, G Vijaya Prakash
ABSTRACT

Optoelectronic-compatible heterostructures are fabricated from layered inorganic-organic multiple quantum wells (IO-MQW) of Cyclohexenyl ethyl ammonium lead iodide, (C(6)H(9)C(2)H(4)NH(3))(2)PbI(4) (CHPI). These hybrids possess strongly-resonant optical features, are thermally stable and compatible with hybrid photonics assembly. Room-temperature strong-coupling is observed when these hybrids are straightforwardly embedded in metal-air (M-A) and metal-metal (M-M) low-Q microcavities, due to the large oscillator strength of these IO-MQWs. The strength of the Rabi splitting is 130 meV for M-A and 160 meV for M-M cavities. These values are significantly higher than for J-aggregates in all-metal microcavities of similar length. These experimental results are in good agreement with transfer matrix simulations based on resonant excitons. Incorporating exciton-switching hybrids allows active control of the strong-coupling parameters by temperature, suggesting new device applications.