Skip to Content
Merck
CN
  • Ultrafast vibrational population transfer dynamics in 2-acetylcyclopentanone studied by 2D IR spectroscopy.

Ultrafast vibrational population transfer dynamics in 2-acetylcyclopentanone studied by 2D IR spectroscopy.

Chemphyschem : a European journal of chemical physics and physical chemistry (2011-02-09)
Sungnam Park, Minbiao Ji
ABSTRACT

2-Acetylcyclopentanone (2-ACP), which is a β-dicarbonyl compound, undergoes keto-enol isomerization, and its enol tautomers are stabilized by a cyclic intramolecular hydrogen bond. 2-ACP (keto form) has symmetric and asymmetric vibrational modes of the two carbonyl groups at 1748 and 1715 cm(-1) , respectively, which are well separated from the carbonyl modes of its enol tautomers in the FTIR spectrum. We have investigated 2-ACP dissolved in carbon tetrachloride by 2D IR spectroscopy and IR pump-probe spectroscopy. Vibrational population transfer dynamics between the two carbonyl modes were observed by 2D IR spectroscopy. To extract the population exchange dynamics (i.e., the down- and uphill population transfer rate constants), we used the normalized volumes of the cross-peaks with respect to the diagonal peaks at the same emission frequency and the survival and conditional probability functions. As expected, the downhill population transfer time constant (3.2 ps) was measured to be smaller than the uphill population transfer time constant (3.8 ps). In addition, the vibrational population relaxation dynamics of the two carbonyl modes were observed to be the same within the experimental error and were found to be much slower than vibrational population transfer between two carbonyl modes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-Acetylcyclopentanone, 98%