Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

We are planning system maintenance between Friday, Apr 11 at 9:00 PM CDT and Saturday, Apr 12 at 9:00 AM CDT. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

Merck
CN
  • Comparison of 2,2-bis(bromomethyl)-1,3-propanediol induced genotoxicity in UROtsa cells and primary rat hepatocytes: relevance of metabolism and oxidative stress.

Comparison of 2,2-bis(bromomethyl)-1,3-propanediol induced genotoxicity in UROtsa cells and primary rat hepatocytes: relevance of metabolism and oxidative stress.

Toxicology letters (2013-08-21)
Weixi Kong, Pengfei Gu, Gabriel A Knudsen, I Glenn Sipes
ABSTRACT

2,2-Bis(bromomethyl)-1,3-propanediol (BMP) is a brominated flame retardant used in urethane foams and polyester resins. In a two year dietary study, BMP caused neoplastic lesions at multiple sites including the urinary bladder of both rats and mice. However, liver was not a target tissue. We previously reported that BMP elicited oxidative DNA damage in a human uroepithelial cell line (UROtsa). The present in vitro study investigated the susceptibility of target (UROtsa cells) and non-target cells (primary rat hepatocytes) to BMP-induced genotoxicity. In contrast to hepatocytes, BMP exhibited greater genotoxic potential in UROtsa cells as evidenced by the concentration dependent increase in DNA strand breaks and DNA binding. Total content of intracellular GSH quantified in UROtsa cells (2.7±1.0nmol/mg protein) was 4 fold lower than that in hepatocytes (10.7±0.3nmol/mg protein). HPLC analysis indicated BMP was not metabolized and/or consumed in UROtsa cells at any of the concentrations tested (10-250μM) but was extensively converted to a mono-glucuronide in hepatocytes. These results demonstrate that a target cell line such as UROtsa cells are more susceptible to BMP-induced DNA damage when compared to non-target cells. This increased susceptibility may relate to the deficiency of antioxidant and/or metabolic capabilities in UROtsa cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2,2-Bis(bromomethyl)-1,3-propanediol, 98%
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPriceQuantity
25 g
Please contact Customer Service for Availability
CN¥432.28
1 kg
Please contact Customer Service for Availability
CN¥930.88
3 kg
Estimated to ship on May 06, 2025
Details...
CN¥2,371.34