Skip to Content
Merck
CN
  • Intranasal delivery of cell-penetrating anti-NF-κB peptides (Tat-NBD) alleviates infection-sensitized hypoxic-ischemic brain injury.

Intranasal delivery of cell-penetrating anti-NF-κB peptides (Tat-NBD) alleviates infection-sensitized hypoxic-ischemic brain injury.

Experimental neurology (2013-01-29)
Dianer Yang, Yu-Yo Sun, Xiaoyi Lin, Jessica M Baumann, R Scott Dunn, Diana M Lindquist, Chia-Yi Kuan
ABSTRACT

Perinatal infection aggravates neonatal hypoxic-ischemic (HI) brain injury and may interfere with therapeutic hypothermia. While the NF-κB signaling pathway has been implicated in microglia activation in infection-sensitized HI, the current therapeutic strategies rely on systemic intervention, which could impair neonatal immunity and increase the risk of severe infection. To devise a brain-targeted anti-NF-κB strategy, we examined the effects of intranasal delivery of tat-NBD peptides in two animal models of neonatal infection-sensitized HI. Kinetic experiments showed that tat-NBD peptides entered the olfactory bulbs rapidly (10-30 min) and peaked in the cerebral cortex around 60 min after intranasal application in P7 rats. Further, intranasal delivery of 1.4 mg/kg tat-NBD, which is only 7% of the intravenous dose in past studies, markedly attenuated NF-κB signaling, microglia activation, and brain damage triggered by HI with 4 or 72 h pre-exposure to the bacterial endotoxin lipopolysaccharide (LPS). In contrast, intranasal delivery of mutant tat-NBD peptides or systemic application of minocycline failed to block LPS-sensitized HI injury. Yet, intranasal delivery of up to 5.6 mg/kg tat-NBD peptides immediately after pure-HI insult showed little protection, likely due to its rapid clearance from the brain and inability to inhibit parenchymal plasminogen activators. Together, these results suggest a novel therapy of infection-sensitized HI brain injury in newborns.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2,3,5-Triphenyltetrazolium chloride, ≥98.0% (HPLC)
Millipore
2,3,5-Triphenyl-tetrazolium chloride solution, suitable for microbiology, Filter sterilized solution that is recommended for the detection of microbial growth based on reduction of TTC